$A$ uniform disc is rolling on a horizontal surface. At a certain instant $B$ is the point of contact and $A$ is at height $2R$ from ground, where $R$ is radius of disc.
The magnitude of the angular momentum of the disc about $B$ is thrice that about $A$.
The angular momentum of the disc about $A$ is anticlockwise.
The angular momentum of the disc about $B$ is clockwise
All of the above
In an orbital motion, the angular momentum vector is
A particle of mass $20\,g$ is released with an initial velocity $5\,m/s$ along the curve from the point $A,$ as shown in the figure. The point $A$ is at height $h$ from point $B.$ The particle slides along the frictionless surface. When the particle reaches point $B,$ its angular momentum about $O$ will be ......... $kg - m^2/s$. [Take $g = 10\,m/s^2$ ]
A particle of mass $m = 5$ is moving with a uniform speed $v = 3\sqrt 2$ in the $XOY$ plane along the line $Y = X + 4$ . The magnitude of the angular momentum of the particle about the origin is .......
Find the components along the $x, y, z$ axes of the angular momentum $l$ of a particle. whose position vector is $r$ with components $x, y, z$ and momentum is $p$ with components $p_{ r }, p_{ y }$ and $p_{z} .$ Show that if the particle moves only in the $x -y$ plane the angular momentum has only a $z-$component.
$A$ particle of mass $0.5\, kg$ is rotating in a circular path of radius $2m$ and centrepetal force on it is $9$ Newtons. Its angular momentum (in $J·sec$) is: