A particle is moving along a straight line with increasing speed. Its angular momentum about a fixed point on this line ............
Goes on increasing
Goes on decreasing
May be increasing or decreasing depending on direction of motion
Remains zero
A flywheel can rotate in order to store kinetic energy. The flywheel is a uniform disk made of a material with a density $\rho $ and tensile strength $\sigma $ (measured in Pascals), a radius $r$ , and a thickness $h$ . The flywheel is rotating at the maximum possible angular velocity so that it does not break. Which of the following expression correctly gives the maximum kinetic energy per kilogram that can be stored in the flywheel ? Assume that $\alpha $ is a dimensionless constant
$A$ paritcle falls freely near the surface of the earth. Consider $a$ fixed point $O$ (not vertically below the particle) on the ground.
A ball of mass $1 \,kg$ is projected with a velocity of $20 \sqrt{2}\,m / s$ from the origin of an $x y$ co-ordinate axis system at an angle $45^{\circ}$ with $x$-axis (horizontal). The angular momentum [In $SI$ units] of the ball about the point of projection after $2 \,s$ of projection is [take $g=10 \,m / s ^2$ ] ( $y$-axis is taken as vertical)
Explain Cartesian components of angular momentum of a particle.
Two rigid bodies $A$ and $B$ rotate with rotational kinetic energies $E_A$ and $E_B$ respectively. The moments of inertia of $A$ and $B$ about the axis of rotation are $I_A$ and $I_B$ respectively. If $I_A = I_B/4 \,$and$ \, E_A = 100\ E_B$ the ratio of angular momentum $(L_A)$ of $A$ to the angular momentum $(L_B)$ of $B$ is