A particle is moving in a uniform magnetic field, then

  • A

    Its momentum changes but total energy remains the same

  • B

    Both momentum and total energy remain the same

  • C

    Both will change

  • D

    Total energy changes but momentum remains the same

Similar Questions

A particle of mass $m$ and charge $q$ is thrown from origin at $t = 0$ with velocity $2\hat{i}$ + $3\hat{j}$ + $4\hat{k}$ units in a region with uniform magnetic field $\vec B$ = $2\hat{i}$ units. After time $t =\frac{{\pi m}}{{qB}}$ , an electric field  is switched on such that particle moves on a straight line with constant speed. $\vec E$ may be

An $\alpha$-particle (mass $4 amu$ ) and a singly charged sulfur ion (mass $32 amu$ ) are initially at rest. They are accelerated through a potential $V$ and then allowed to pass into a region of uniform magnetic field which is normal to the velocities of the particles. Within this region, the $\alpha$-particle and the sulfur ion move in circular orbits of radii $r_\alpha$ and $r_5$, respectively. The ratio $\left(r_s / r_\alpha\right)$ is. . . . .$(4)$

  • [IIT 2021]

A proton is moving along $Z$-axis in a magnetic field. The magnetic field is along $X$-axis. The proton will experience a force along

An electron moves through a uniform magnetic field $\vec{B}=B_0 \hat{i}+2 B_0 \hat{j} T$. At a particular instant of time, the velocity of electron is $\overrightarrow{\mathrm{u}}=3 \hat{i}+5 \hat{j} \mathrm{~m} / \mathrm{s}$. If the magnetic force acting on electron is $\vec{F}=5 e\hat kN$, where $e$ is the charge of electron, then the value of $\mathrm{B}_0$ is ____$\mathrm{T}$.

  • [JEE MAIN 2024]

Show that a force that does no work must be a velocity dependent force.