किसी कण पर एक साथ $4 \,N$ व $3 \,N$ के दो बल लगते हैं तो कण पर कुल बल है
$7\, N$
$5 \,N$
$1\, N$
$1 \,N $ तथा $7\, N$ के मध्य
चित्रानुसार बलों $\overrightarrow{ OP }, \overrightarrow{ OQ }, \overrightarrow{ OR }, \overrightarrow{ OS }$ तथा $\overrightarrow{ OT }$ का परिणामी लगभग होता है।
[मान लिजिए: $\sqrt{3}=1.7, \sqrt{2}=1.4$ । दिया है $\hat{i}$ तथा $\hat{ j }$ क्रमश: $x$ तथा $y$ अक्ष के अनुदिश इकाई सदिश हैं]
दो सदिशों $\overrightarrow{ A }$ तथा $\overrightarrow{ B }$ के परिमाण समान है। $(\overrightarrow{ A }+\overrightarrow{ B })$ का परिमाण $(\overrightarrow{ A }-\overrightarrow{ B })$ के परिमाण का $n$ गुना है। $\overrightarrow{ A }$ तथा $\overrightarrow{ B }$ के मध्य कोण है।
दिया है $a + b + c + d = 0$, नीचे दिए गए कथनों में से कौन-सा सही है
$(a)$ $a , b , c$ तथा $d$ में से प्रत्येक शून्य सदिश है,
$(b)$ $( a + c )$ का परिमाण $( b + d )$ के परिमाण के बराबर है, नहीं हो सकता
$(d)$ यदि $a$ तथा $d$ सरेखीय नहीं हैं तो $b + c$ अवश्य ही $a$ तथा $d$ के समतल में होगा, और यह $a$ तथा $d$ के अनुदिश होगा यद् वे सरंखीय हैं ।
दिया है $\mathop A\limits^ \to + \mathop B\limits^ \to = \mathop C\limits^ \to $ तथा $\mathop C\limits^ \to $, $\mathop A\limits^ \to $ के लम्बवत है इसके अतिरिक्त यदि $|\mathop A\limits^ \to |\, = \,|\mathop C\limits^ \to |,$तो $\mathop A\limits^ \to $ तथा $\mathop B\limits^ \to $ के बीच कोण होगा