किसी कण पर एक साथ $4 \,N$ व $3 \,N$ के दो बल लगते हैं तो कण पर कुल बल है
$7\, N$
$5 \,N$
$1\, N$
$1 \,N $ तथा $7\, N$ के मध्य
किसी बिन्दु पर कार्य करने वाले दो बलों का योग $16 \,N$ है। यदि परिणामी बल का मान $8 \,N $ तथा इसकी दिशा न्यूनतम बल के लम्बवत् है तो बलों के मान होंगे
दो बलों $3P$ एवं $2P$ का परिणामी $R $ है। यदि प्रथम बल को दोगुना कर दिया जाये तो परिणामी भी दोगुना हो जाता है। दोनों बलों के बीच कोण ........... $^o$ है
$\overrightarrow A + \overrightarrow B $ का परिणामी ${\mathop R\limits^ \to _1}$ है। सदिश $\overrightarrow {B,} $ को पलटने (विपरीत दिशा) पर परिणामी ${\mathop R\limits^ \to _2}$ हो जाता है। $R_1^2 + R_2^2$ का मान क्या होगा
सदिशों $\mathop A\limits^ \to ,\,\mathop B\limits^ \to $ तथा $\mathop C\limits^ \to $के परिमाण क्रमश: $3, 4$ तथा $5$ इकाई हैं। यदि $\mathop A\limits^ \to + \mathop B\limits^ \to = \mathop C\limits^ \to $, तब सदिश $\mathop A\limits^ \to $ तथा $\mathop B\limits^ \to $ के बीच कोण होगा
सदिश $\mathop A\limits^ \to ,\,\mathop B\limits^ \to $ व $\mathop C\limits^ \to $ के परिमाण क्रमश: $12, 5$ तथा $13$ इकाई हैं तथा $\mathop A\limits^ \to + \mathop B\limits^ \to = \mathop C\limits^ \to $ है तो $\mathop A\limits^ \to $ व $\mathop B\limits^ \to $ के बीच कोण होगा