- Home
- Standard 11
- Physics
2.Motion in Straight Line
medium
A particle moves along a straight line. Its position at any instant is given by $x=32 t-\frac{8 t^3}{3}$, where $x$ is in metre and $t$ is in second. Find the acceleration of the particle at the instant when particle is at rest $..........\,m / s ^2$
A$-16$
B$-32$
C$32$
D$16$
Solution
(b)
$v=\frac{d x}{d t}=32-8 t^2$
$v=0$ at $t=2 \,s \quad a=\frac{d v}{d t}=-16 t$
At $2\,s , \quad a=-32\,m / s ^2$
$v=\frac{d x}{d t}=32-8 t^2$
$v=0$ at $t=2 \,s \quad a=\frac{d v}{d t}=-16 t$
At $2\,s , \quad a=-32\,m / s ^2$
Standard 11
Physics
Similar Questions
Velocity of a particle is in negative direction with constant acceleration in positive direction. Then, match the following columns.
Colum $I$ | Colum $II$ |
$(A)$ Velocity-time graph | $(p)$ Slope $\rightarrow$ negative |
$(B)$ Acceleration-time graph | $(q)$ Slope $\rightarrow$ positive |
$(C)$ Displacement-time graph | $(r)$ Slope $\rightarrow$ zero |
$(s)$ $\mid$ Slope $\mid \rightarrow$ increasing | |
$(t)$ $\mid$ Slope $\mid$ $\rightarrow$ decreasing | |
$(u)$ |Slope| $\rightarrow$ constant |
medium
medium