- Home
- Standard 11
- Physics
A particle moves along a straight line $OX$ . At a time $t$ (in seconds) the distance $x$ (in metres ) of the particle from $O$ is given by $x = 40 + 12t - {t^3}$.How long would the particle travel before coming to rest ?..........$m$
$16$
$24$
$40$
$56$
Solution
$\begin{array}{l}
x = 40 + 12t – {t^3}\\
\therefore \,\,Velocity\,V = \frac{{dx}}{{dt}} = 12 – 3{t^2}\\
When\,particle\,come\,to\,rest,\,dx/dt = v = 0\\
\therefore \,12 – 3{t^2} = \, \Rightarrow \,3{t^2} = 12\, \Rightarrow \,t = 2\,\,\sec .\\
{\rm{Distance}}\,travelled\,by\,the\,particle\,before\,
\end{array}$
$\begin{array}{l}
{\rm{coming}}\,to\,rest\\
\int\limits_0^s {ds = } \int\limits_0^2 {vdt} \,\,\,\,s = \int\limits_0^2 {\left( {12 – 3{t^2}} \right)dt = 12t – } \left. {\frac{{3{t^3}}}{3}} \right|_0^2\\
s = 12 \times 2 – 8 = 24 – 8 = 16\,m.
\end{array}$