2.Motion in Straight Line
medium

एक कण सीधी रेखा $OX$ के साथ चलता है। $t$ समय (सेकंडो में) पर कण की $O$ से दूरी (मीटर में) इस प्रकार है: $x =40+12 t - t ^{3}$ । कण को विराम में आने के लिए कितनी दूरी तय करनी पड़ेगी ? (मीटर में)

A

$16$

B

$24$

C

$40$

D

$56$

(AIPMT-2006)

Solution

$\begin{array}{l}
x = 40 + 12t – {t^3}\\
\therefore \,\,Velocity\,V = \frac{{dx}}{{dt}} = 12 – 3{t^2}\\
When\,particle\,come\,to\,rest,\,dx/dt = v = 0\\
\therefore \,12 – 3{t^2} = \, \Rightarrow \,3{t^2} = 12\, \Rightarrow \,t = 2\,\,\sec .\\
{\rm{Distance}}\,travelled\,by\,the\,particle\,before\,
\end{array}$

$\begin{array}{l}
{\rm{coming}}\,to\,rest\\
\int\limits_0^s {ds = } \int\limits_0^2 {vdt} \,\,\,\,s = \int\limits_0^2 {\left( {12 – 3{t^2}} \right)dt = 12t – } \left. {\frac{{3{t^3}}}{3}} \right|_0^2\\
s = 12 \times 2 – 8 = 24 – 8 = 16\,m.
\end{array}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.