4-1.Newton's Laws of Motion
medium

એક કણ $\overrightarrow{{F}}$ બળની અસર હેઠળ $x-y$ સમતલમાં એવી રીતે ગતિ કરે છે કે તેનું રેખીય વેગમાન $\overrightarrow{{p}}({t})=\hat{i} \cos ({kt})-\hat{j} \sin ({kt})$ થી આપી શકાય છે. જો ${k}$ એ અચળાંક હોય, તો $\overrightarrow{{F}}$ અને $\overrightarrow{{p}}$ વચ્ચેનો કોણ. . . . . . . .થશે.

A$\frac{\pi}{2}$
B$\frac{\pi}{6}$
C$\frac{\pi}{4}$
D$\frac{\pi}{3}$
(JEE MAIN-2024) (IIT-2007)

Solution

$\overrightarrow{\mathrm{P}}=\cos (\mathrm{kt}) \hat{\mathrm{i}}-\sin (\mathrm{kt}) \hat{\mathrm{j}} ;|\overrightarrow{\mathrm{P}}|=1$
$\because \overrightarrow{\mathrm{P}}=\mathrm{m} \overrightarrow{\mathrm{v}}$
$\therefore \hat{\mathrm{P}}=\hat{\mathrm{v}}$
$\Rightarrow \hat{\mathrm{v}}=\cos (\mathrm{kt}) \hat{\mathrm{i}}-\sin (\mathrm{kt}) \hat{\mathrm{j}}$
$\hat{\mathrm{a}}=\frac{-\mathrm{k} \sin (\mathrm{kt}) \hat{\mathrm{i}}-\mathrm{k} \cos (\mathrm{kt}) \hat{\mathrm{j}}}{\mathrm{k}}$
$\Rightarrow \hat{\mathrm{a}}=-\sin k t \hat{\mathrm{i}}-\cos k \hat{\mathrm{t}}$
$\because \hat{\mathrm{F}}=\hat{\mathrm{a}}=-\sin \mathrm{kt} \hat{\mathrm{i}}-\cos k t \hat{\mathrm{j}}$
$\cos \theta=\frac{\hat{\mathrm{F}} \cdot \hat{\mathrm{P}}}{|\hat{\mathrm{F}}| \hat{\mathrm{P}} \mid}=-\frac{\sin k t \cos \mathrm{t}+\sin k t \cos \mathrm{t}}{1 \times 1}=0$
$\Rightarrow \theta=\frac{\pi}{2}$
Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.