- Home
- Standard 11
- Physics
4-1.Newton's Laws of Motion
medium
A particle moves in $\mathrm{x}-\mathrm{y}$ plane under the influence of a force $\vec{F}$ such that its linear momentum is $\vec{P}(t)=\hat{i} \cos (k t)-\hat{j} \sin (k t)$. If $k$ is constant, the angle between $\overrightarrow{\mathrm{F}}$ and $\overrightarrow{\mathrm{P}}$ will be :
A$\frac{\pi}{2}$
B$\frac{\pi}{6}$
C$\frac{\pi}{4}$
D$\frac{\pi}{3}$
(JEE MAIN-2024) (IIT-2007)
Solution
$\overrightarrow{\mathrm{P}}=\cos (\mathrm{kt}) \hat{\mathrm{i}}-\sin (\mathrm{kt}) \hat{\mathrm{j}} ;|\overrightarrow{\mathrm{P}}|=1$
$\because \overrightarrow{\mathrm{P}}=\mathrm{m} \overrightarrow{\mathrm{v}}$
$\therefore \hat{\mathrm{P}}=\hat{\mathrm{v}}$
$\Rightarrow \hat{\mathrm{v}}=\cos (\mathrm{kt}) \hat{\mathrm{i}}-\sin (\mathrm{kt}) \hat{\mathrm{j}}$
$\hat{\mathrm{a}}=\frac{-\mathrm{k} \sin (\mathrm{kt}) \hat{\mathrm{i}}-\mathrm{k} \cos (\mathrm{kt}) \hat{\mathrm{j}}}{\mathrm{k}}$
$\Rightarrow \hat{\mathrm{a}}=-\sin k t \hat{\mathrm{i}}-\cos k \hat{\mathrm{t}}$
$\because \hat{\mathrm{F}}=\hat{\mathrm{a}}=-\sin \mathrm{kt} \hat{\mathrm{i}}-\cos k t \hat{\mathrm{j}}$
$\cos \theta=\frac{\hat{\mathrm{F}} \cdot \hat{\mathrm{P}}}{|\hat{\mathrm{F}}| \hat{\mathrm{P}} \mid}=-\frac{\sin k t \cos \mathrm{t}+\sin k t \cos \mathrm{t}}{1 \times 1}=0$
$\Rightarrow \theta=\frac{\pi}{2}$
$\because \overrightarrow{\mathrm{P}}=\mathrm{m} \overrightarrow{\mathrm{v}}$
$\therefore \hat{\mathrm{P}}=\hat{\mathrm{v}}$
$\Rightarrow \hat{\mathrm{v}}=\cos (\mathrm{kt}) \hat{\mathrm{i}}-\sin (\mathrm{kt}) \hat{\mathrm{j}}$
$\hat{\mathrm{a}}=\frac{-\mathrm{k} \sin (\mathrm{kt}) \hat{\mathrm{i}}-\mathrm{k} \cos (\mathrm{kt}) \hat{\mathrm{j}}}{\mathrm{k}}$
$\Rightarrow \hat{\mathrm{a}}=-\sin k t \hat{\mathrm{i}}-\cos k \hat{\mathrm{t}}$
$\because \hat{\mathrm{F}}=\hat{\mathrm{a}}=-\sin \mathrm{kt} \hat{\mathrm{i}}-\cos k t \hat{\mathrm{j}}$
$\cos \theta=\frac{\hat{\mathrm{F}} \cdot \hat{\mathrm{P}}}{|\hat{\mathrm{F}}| \hat{\mathrm{P}} \mid}=-\frac{\sin k t \cos \mathrm{t}+\sin k t \cos \mathrm{t}}{1 \times 1}=0$
$\Rightarrow \theta=\frac{\pi}{2}$
Standard 11
Physics