3-2.Motion in Plane
medium

A particle moves such that its position vector $\overrightarrow{\mathrm{r}}(\mathrm{t})=\cos \omega \mathrm{t} \hat{\mathrm{i}}+\sin \omega \mathrm{t} \hat{\mathrm{j}}$ where $\omega$ is a constant and $t$ is time. Then which of the following statements is true for the velocity $\overrightarrow{\mathrm{v}}(\mathrm{t})$ and acceleration $\overrightarrow{\mathrm{a}}(\mathrm{t})$ of the particle

A

$\overrightarrow{\mathrm{v}}$ is perpendicular to $\overrightarrow{\mathrm{r}}$ and $\overrightarrow{\mathrm{a}}$ is directed towards the origin

B

$\overrightarrow{\mathrm{v}}$ and $\overrightarrow{\mathrm{a}}$ both are parallel to $\overrightarrow{\mathrm{r}}$

C

$\overrightarrow{\mathrm{v}}$ and $\overrightarrow{\mathrm{a}}$ both are perpendicular to $\overrightarrow{\mathrm{r}}$

D

$\overrightarrow{\mathrm{v}}$ is perpendicular to $\overrightarrow{\mathrm{r}}$ and $\overrightarrow{\mathrm{a}}$ is directed away from the origin

(JEE MAIN-2020)

Solution

$\overrightarrow{\mathrm{r}}(\mathrm{t})=\cos \omega \hat{\mathrm{i}}+\sin \omega \mathrm{t} \hat{\mathrm{j}}$

On diff. we get

${\overrightarrow{\mathrm{v}}=-\omega \sin \omega \mathrm{t} \hat{\mathrm{i}}+\omega \cos \omega \mathrm{t} \hat{\mathrm{j}}}$

${\overrightarrow{\mathrm{a}}=-\omega^{2} \overrightarrow{\mathrm{r}}}$

${\overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{r}}=0}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.