A particle of mass $1\ gm$ and charge $ - 0.1\,\mu C$ is projected from ground with a velocity $10\sqrt 2 $ at an $45^o$ with horizontal in the area having uniform electric field $1\ kV/cm$ in horizontal direction. Acceleration due to gravity is $10\ m/s^2$ in vertical downward direction. Select $INCORRECT$ statement
Time of flight for particle is $2\,sec$
Range of particle is $20\ m$
Total displacement of particle is $0\ m$
Particle will follow straight line motion.
The figures below depict two situations in which two infinitely long static line charges of constant positive line charge density $\lambda$ are kept parallel to each other. In their resulting electric field, point charges $q$ and $- q$ are kept in equilibrium between them. The point charges are confined to move in the $x$ direction only. If they are given a small displacement about their equilibrium positions, then the correct statement$(s)$ is(are)
An electron falls through a distance of $1.5\; cm$ in a uniform electric field of magnitude $2.0 \times 10^{4} \;N C ^{-1} \text {[Figure (a)]} .$ The direction of the field is reversed keeping its magnitude unchanged and a proton falls through the same distance [Figure $(b)] .$ Compute the time of fall in each case. Contrast the situation with that of 'free fall under gravity'.
Three particles are projected in a uniform electric field with same velocity perpendicular to the field as shown. Which particle has highest charge to mass ratio?
An electron falls from rest through a vertical distance $h$ in a uniform and vertically upward directed electric field $E.$ The direction of electric field is now reversed, keeping its magnitude the same. A proton is allowed to fall from rest in it through the same vertical distance $h.$ The time of fall of the electron, in comparison to the time of fall of the proton is
Four point $+ve$ charges of same magnitude $(Q)$ are placed at four corners of a rigid square frame as shown in figure. The plane of the frame is perpendicular to $Z-$ axis. If a $ -ve$ point charge is placed at a distance $z$ away from centre along axis $(z << L )$ then