A particle of mass $1\ gm$ and charge $ - 0.1\,\mu C$ is projected from ground with a velocity $10\sqrt 2 $ at an $45^o$ with horizontal in the area having uniform electric field $1\ kV/cm$ in horizontal direction. Acceleration due to gravity is $10\ m/s^2$ in vertical downward direction. Select $INCORRECT$ statement

817-648

  • A

    Time of flight for particle is $2\,sec$

  • B

    Range of particle is $20\ m$

  • C

    Total displacement of particle is $0\ m$

  • D

    Particle will follow straight line motion.

Similar Questions

A uniform electric field $\vec E$ exists between the plates of a charged condenser. A charged particle enters the space between the plates and perpendicular to $\vec E$ . The path of the particle between the plates is a

  • [JEE MAIN 2013]

An electron falls through a distance of $1.5\; cm$ in a uniform electric field of magnitude $2.0 \times 10^{4} \;N C ^{-1} \text {[Figure (a)]} .$ The direction of the field is reversed keeping its magnitude unchanged and a proton falls through the same distance [Figure $(b)] .$ Compute the time of fall in each case. Contrast the situation with that of 'free fall under gravity'.

A positive charge particle of $100 \,mg$ is thrown in opposite direction to a uniform electric field of strength $1 \times 10^{5} \,NC ^{-1}$. If the charge on the particle is $40 \,\mu C$ and the initial velocity is $200 \,ms ^{-1}$, how much distance (in $m$) it will travel before coming to the rest momentarily

  • [JEE MAIN 2022]

A particle of mass $\mathrm{m}$ and charge $\mathrm{q}$ is released from rest in a uniform electric field. If there is no other force on the particle, the dependence of its speed $v$ on the distance $x$ travelled by it is correctly given by (graphs are schematic and not drawn to scale)

  • [JEE MAIN 2020]

An electric line of force in $X$, $Y-$ plane is given by $x^2+y^2 = 1$. A particle with unit positive charge, initially at rest at the point $x = 1, y = 0$ in the $X, Y-$ plane