A body having specific charge $8\,\mu {C} / {g}$ is resting on a frictionless plane at a distance $10\, {cm}$ from the wall (as shown in the figure). It starts moving towards the wall when a uniform electric field of $100 \,{V} / {m}$ is applied horizontally toward the wall. If the collision of the body with the wall is perfectly elastic, then the time period of the motion will be $....\, S.$
$1$
$5$
$7$
$8$
Four point $+ve$ charges of same magnitude $(Q)$ are placed at four corners of a rigid square frame as shown in figure. The plane of the frame is perpendicular to $Z-$ axis. If a $ -ve$ point charge is placed at a distance $z$ away from centre along axis $(z << L )$ then
A charged particle (mass $m$ and charge $q$ ) moves along $X$ axis with velocity $V _{0}$. When it passes through the origin it enters a region having uniform electric field $\overrightarrow{ E }=- E \hat{ j }$ which extends upto $x = d$. Equation of path of electron in the region $x > d$ is
An electron moving with the speed $5 \times {10^6}$ per sec is shooted parallel to the electric field of intensity $1 \times {10^3}\,N/C$. Field is responsible for the retardation of motion of electron. Now evaluate the distance travelled by the electron before coming to rest for an instant (mass of $e = 9 \times {10^{ - 31}}\,Kg.$ charge $ = 1.6 \times {10^{ - 19}}\,C)$
The figures below depict two situations in which two infinitely long static line charges of constant positive line charge density $\lambda$ are kept parallel to each other. In their resulting electric field, point charges $q$ and $- q$ are kept in equilibrium between them. The point charges are confined to move in the $x$ direction only. If they are given a small displacement about their equilibrium positions, then the correct statement$(s)$ is(are)
An inclined plane making an angle of $30^{\circ}$ with the horizontal is placed in a uniform horizontal electric field $200 \, \frac{ N }{ C }$ as shown in the figure. A body of mass $1\, kg$ and charge $5\, mC$ is allowed to slide down from rest at a height of $1\, m$. If the coefficient of friction is $0.2,$ find the time (in $s$ )taken by the body to reach the bottom. $\left[ g =9.8 \,m / s ^{2}, \sin 30^{\circ}=\frac{1}{2}\right.$; $\left.\cos 30^{\circ}=\frac{\sqrt{3}}{2}\right]$