An electron of mass ${m_e}$ initially at rest moves through a certain distance in a uniform electric field in time ${t_1}$. A proton of mass ${m_p}$ also initially at rest takes time ${t_2}$ to move through an equal distance in this uniform electric field. Neglecting the effect of gravity, the ratio of ${t_2}/{t_1}$ is nearly equal to
$1$
${({m_p}/{m_e})^{1/2}}$
${({m_e}/{m_p})^{1/2}}$
$1836$
The surface of a planet is found to be uniformly charged. When a particle of mass $m$ and no charge is thrown at an angle from the surface of the planet, it has a parabolic trajectory as in projectile motion with horizontal range $L$. A particle of mass $m$ and charge $q$, with the same initial conditions has a range $L / 2$. The range of particle of mass $m$ and charge $2 q$, with the same initial conditions is
An electron is released from the bottom plate $A$ as shown in the figure $(E = 10^4\, N/C)$. The velocity of the electron when it reaches plate $B$ will be nearly equal to
A particle of charge $1\ \mu C\ \&\ mass$ $1\ gm$ moving with a velocity of $4\ m/s$ is subjected to a uniform electric field of magnitude $300\ V/m$ for $10\ sec$. Then it's final speed cannot be.......$m/s$
A simple pendulum is suspended in a lift which is going up with an acceleration $5\ m/s^2$. An electric field of magnitude $5 \ N/C$ and directed vertically upward is also present in the lift. The charge of the bob is $1\ mC$ and mass is $1\ mg$. Taking $g = \pi^2$ and length of the simple pendulum $1\ m$, the time period of the simple pendulum is ......$s$
A particle of mass $m$ and charge $(-q)$ enters the region between the two charged plates initially moving along $x$ -axis with speed $v_{x}=2.0 \times 10^{6} \;m\, s ^{-1} .$ If $E$ between the plates separated by $0.5 \;cm$ is $9.1 \times 10^{2} \;N / C ,$ where will the electron strike the upper plate in $cm$?
$\left(|e|=1.6 \times 10^{-19} \;C , m_{e}=9.1 \times 10^{-31}\; kg .\right)$