5.Work, Energy, Power and Collision
hard

A particle of mass $m_1$ is moving with a velocity $v_1$ and another particle of mass $m_2$ is moving with a velocity $v_2$ . Both of them have the same momentum but their different kinetic energies are $E_1$ and $E_2$ respectively. If $m_1 > m_2$ then

A

$E_1 < E_2$

B

$\frac{{{E_1}}}{{{E_2}}}\, = \,\frac{{{m_1}}}{{{m_2}}}$

C

$E_1 > E_2$

D

$E_1 = E_2$

Solution

Kinetic energy is given by

$E=\frac{1}{2} m v^{2}=\frac{1}{2 m}(m v)^{2}$

but $\mathrm{mv}=$ momentum of the particle $=\mathrm{p}$

$\mathrm{E}=\frac{\mathrm{p}^{2}}{2 \mathrm{m}} \quad$ or $\quad \mathrm{p}=\sqrt{2 \mathrm{mE}}$

Therefore, $\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\sqrt{\frac{\mathrm{m}_{1} \mathrm{E}_{1}}{\mathrm{m}_{2} \mathrm{E}_{2}}}$

but it is given that $\mathrm{p}_{1}=\mathrm{p}_{2}$

$\mathrm{m}_{1} \mathrm{E}_{1}=\mathrm{m}_{2} \mathrm{E}_{2}$

or $\frac{E_{1}}{E_{2}}=\frac{m_{2}}{m_{1}}$           $…(i)$

Now $\mathrm{m}_{1}>\mathrm{m}_{2}$

$\text { or } \frac{\mathrm{m}_{1}}{\mathrm{m}_{2}}>1$          $…(ii)$

Thus, Eqs. $(i)$ and $(ii)$ give

$\frac{E_{1}}{E_{2}}<1$

or $\quad \mathrm{E}_{1}<\mathrm{E}_{2}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.