A particle of mass $m$ is moving in a circular path of constant radius $r$ such that its centripetal acceleration $a_c$ is varying with time $t$ as, $a_c = k^2rt^2$, The power delivered to the particle by the forces acting on it is

  • A

    $2\pi mk^2r^2t$

  • B

    $mk^2r^2t$

  • C

    $\frac{{m{k^4}{r^2}{t^5}}}{3}$

  • D

    Zero

Similar Questions

A rifle bullets loses $\left(\frac{1}{20}\right)^{th}$ of its velocity in passing through a plank. Assuming that the plank exerts a constant retarding force, the least number of such planks required just to stop the bullet is .............

A force $\vec F = (5\hat i + 3\hat j)\;N$is applied over a particle which displaces it from its original position to the point $\vec s = (2\hat i - 1\hat j)$m. The work done on the particle is.........$J$

A force of $\left( {2\hat i + 3\hat j + 4\hat k} \right)\,N$ acts on a body for $4\, sec$ and produces a displacement of $\left( {3\hat i + 4\hat j + 5\hat k} \right)\,m.$ The power used is ............. $\mathrm{W}$

A rope is used to lower vertically a block of mass $M$ by a distance $x$ with a constant downward acceleration $\frac{g}{2}$. The work done by the rope on the block is

The work done by a force $\vec F = \left( { - 6{x^3}\hat i} \right)\,N$ in displacing a particle from $x = 4\,m$ to $x = -2\,m$ is ............... $\mathrm{J}$