A particle of mass $M$ is situated at the centre of a spherical shell of same mass and radius $a$. The gravitational potential at a point situated at $\frac {a}{2}$ distance from the centre, will be
$\frac {-\,GM}{a}$
$\frac {-\,2GM}{a}$
$\frac {-\,3GM}{a}$
$\frac {-\,4GM}{a}$
The angular speed of earth in $rad/s$, so that bodies on equator may appear weightless is : [Use $g = 10\, m/s^2$ and the radius of earth $= 6.4 \times 10^3\, km$]
Two masses $m_1$ and $m_2$ start to move towards each other due to mutual gravitational force. If distance covered by $m_1$ is $x$, then the distance covered by $m_2$ is
If $M$ is mass of a planet and $R$ is its radius then in order to become black hole [ $c$ is speed of light]
A particle of mass $M$ is situated at the centre of a spherical shell of same mass and radius $a$. The gravitational potential at a point situated at $\frac{a}{2}$ distance from the centre, will be
A satellite in force free space sweeps stationary interplanetary dust at a rate of $\frac{d M}{d t}=\alpha v$ where $M$ is mass and $v$ is the speed of satellite and $\alpha$ is a constant. The acceleration of satellite is