A particle of mass $\mathrm{m}$ and charge $\mathrm{q}$ is released from rest in a uniform electric field. If there is no other force on the particle, the dependence of its speed $v$ on the distance $x$ travelled by it is correctly given by (graphs are schematic and not drawn to scale)

  • [JEE MAIN 2020]
  • A
    830-a1155
  • B
    830-b1155
  • C
    830-c1155
  • D
    830-d1155

Similar Questions

A uniform vertical electric field $E$ is established in the space between two large parallel  plates. A small conducting sphere of mass $m$ is suspended in the field from a string of  length $L$. If the sphere is given $a + q$ charge and the lower plate is charged positvely, the period of oscillation of this pendulum is :- 

A particle of charge $1\  \mu C\  \&\  mass$ $1\  gm$ moving with a velocity of $4\  m/s$ is subjected to a uniform electric field of magnitude $300\  V/m$ for $10\  sec$. Then it's final speed cannot be.......$m/s$

An electron of mass ${m_e}$ initially at rest moves through a certain distance in a uniform electric field in time ${t_1}$. A proton of mass ${m_p}$ also initially at rest takes time ${t_2}$ to move through an equal distance in this uniform electric field. Neglecting the effect of gravity, the ratio of ${t_2}/{t_1}$ is nearly equal to

  • [IIT 1997]

The electric field inside a spherical shell of uniform surface charge density is

An electron is projected in the direction of electric field. Just after projection of electron