There is a uniform electric field of strength ${10^3}\,V/m$ along $y$-axis. A body of mass $1\,g$ and charge $10^{-6}\,C$ is projected into the field from origin along the positive $x$-axis with a velocity $10\,m/s$. Its speed in $m/s$ after $10\,s$ is (Neglect gravitation)

  • A

    $10$

  • B

    $5\sqrt 2 $

  • C

    $10\sqrt 2 $

  • D

    $20$

Similar Questions

A uniform electric field $E =(8\,m / e ) V / m$ is created between two parallel plates of length $1 m$ as shown in figure, (where $m =$ mass of electron and $e=$ charge of electron). An electron enters the field symmetrically between the plates with a speed of $2\,m / s$. The angle of the deviation $(\theta)$ of the path of the electron as it comes out of the field will be........

  • [JEE MAIN 2022]

A body having specific charge $8\,\mu {C} / {g}$ is resting on a frictionless plane at a distance $10\, {cm}$ from the wall (as shown in the figure). It starts moving towards the wall when a uniform electric field of $100 \,{V} / {m}$ is applied horizontally toward the wall. If the collision of the body with the wall is perfectly elastic, then the time period of the motion will be $....\, S.$

  • [JEE MAIN 2021]

A wooden block performs $SHM$ on a frictionless surface with frequency, $v_0$. The block carries a charge $+Q$ on its surface. If now a uniform electric field $\vec{E}$ is switched-on as shown, then the $SHM$ of the block will be

  • [IIT 2011]

The surface of a planet is found to be uniformly charged. When a particle of mass $m$ and no charge is thrown at an angle from the surface of the planet, it has a parabolic trajectory as in projectile motion with horizontal range $L$. A particle of mass $m$ and charge $q$, with the same initial conditions has a range $L / 2$. The range of particle of mass $m$ and charge $2 q$, with the same initial conditions is

  • [KVPY 2011]

In Millikan's oil drop experiment, a charged drop falls with terminal velocity $V$. If an electric field $E$ is applied in vertically upward direction then it starts moving in upward direction with terminal velocity $2V$.If magnitude of electric field is decreased to $\frac{E}{2}$, then terminal velocity will become