6.System of Particles and Rotational Motion
hard

A particle of mass $'{m}'$ is moving in time $'t'$ on a trajectory given by

$\overrightarrow{{r}}=10 \alpha {t}^{2}\, \hat{{i}}+5 \beta({t}-5)\, \hat{{j}}$

Where $\alpha$ and $\beta$ are dimensional constants. The angular momentum of the particle becomes the same as it was for ${t}=0$ at time ${t}=$ .....$seconds.$

A

$15$

B

$10$

C

$20$

D

$25$

(JEE MAIN-2021)

Solution

$\overrightarrow{ r }=10 \alpha t ^{2} \hat{ i }+5 \beta( t -5) \hat{ j }$

$\overrightarrow{ v }=20 \alpha t \hat{ i }+5 \beta \hat{ j }$

$\overrightarrow{ L }= m (\overrightarrow{ r } \times \overrightarrow{ v })$

$=m\left[10 \alpha t ^{2} \hat{ i }+5 \beta( t -5) \hat{ j }\right] \times[20 \alpha t \hat{ i }+5 \beta \hat{ j }]$

$\overrightarrow{ L }= m \left[50 \alpha \beta t ^{2} \hat{ k }-100 \alpha \beta\left( t ^{2}-5 t \right) \hat{ k }\right]$

At $t =0, \overrightarrow{ L }=\overrightarrow{0}$

$50 \alpha \beta t ^{2}-100 \alpha \beta\left( t ^{2}-5 t \right)=0$

$t -2( t -5)=0$

$t=10 \sec$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.