द्रव्यमान $'m'$ का कोई कण किसी प्रक्षेप पथ पर समय $'t'$ में गतिमान है जिसे इस प्रकार दर्शाया गया है।
$\overrightarrow{ r }=10\; \alpha t ^{2} \hat{ i }+5\; \beta( t -5) \hat{ j }$
यहाँ $\alpha$ और $\beta$ विमीय स्थिरांक है।
इस कण का कोणीय संवेग $t =0$ पर कोणीय संवेग के बराबर तब होगा जब $t =\dots$ सेकण्ड है।
$15$
$10$
$20$
$25$
$1\,kg$ द्रव्यमान एवं $R$ त्रिज्या का एक गोलीय कोश कोणीय चाल $\omega$ से एक क्षैतिज तल पर चित्रानुसार लोटनी गति कर रहा है। कोश के कोणीय संवेग का मूल बिन्दु $O$ के सापेक्ष परिमाण $\frac{ a }{3} R ^2 \omega$ है तो $a$ का मान होगा।
एक कण कोणीय संवेग $L$ से एकसमान वृत्तीय गति कर रहा है। यदि कण की गति की आवृत्ति दुगुनी एवं गतिज ऊर्जा आधी कर दी जाए तो कोणीय संवेग होगा
$m$ तथा $4 m$ द्रव्यमान वाली दो पतली वृताकार चत्रिकाएँ (discs), जिनकी त्रिज्यायें क्रमशः $a$ तथा $2 a$ हैं, के केन्द्रों को $l=\sqrt{24} a$ लम्बाई की द्रव्यमान-रहित द्रढ़ (rigid) डंडी से जोड़ा गया है। इस समूह को एक मजबूत समतल सतह पर लिटाया गया है और फिसलाये बिना इस तरह से घुमाया गया है कि इसकी कोणीय गति डंडी के अक्ष के गिर्द $\omega$ है। पूरे समूह का बिन्दु ' $O$ ' के गिर्द कोणीय संवेग $\vec{L}$ है (चित्र देखियें)। निम्नलिखित में से कौनसा/कौनसे कथन सत्य है / हैं?
$(A)$ पूरे समूह का संहति-केंद्र $z$-अक्ष के गिर्द कोणीय वेग $\omega / 5$ से घूम रहा है
$(B)$ पूरे समूह के संहति-केंद्र का बिन्दु $O$ के गिर्द कोणीय संवेग का परिमाण $81 ma ^2 \omega$ है
$(C)$ पूरे समूह का उसके संहति-केंद्र के गिर्द कोणीय संवेग का परिमाण $17 ma ^2 \omega / 2$ है
$(D)$ $\vec{L}$ के $z$-घटक का परिमाण $55 m a^2 \omega$ है
$log_e L$ तथा $log_e P$ के बीच का ग्राफ होगा (जहाँ $L$ कोणीय संवेग तथा $P$ रेखीय संवेग है)
एक कण, जिसके स्थिति सदिश $r$ के $x, y, z$ अक्षों के अनुदिश अवयव क्रमशः $x, y, z$ हैं, और रेखीय संवेग सदिश $P$ के अवयव $p_{x}, p_{y}, p_{z}$ हैं, के कोणीय संवेग $1$ के अक्षों के अनुदिश अवयव ज्ञात कीजिए। दर्शाइये, कि यदि कण केवल $x-y$ तल में ही गतिमान हो तो कोणीय संवेग का केवल $z-$ अवयव ही होता है।