4-1.Newton's Laws of Motion
medium

A particle of mass $m$ moves with constant speed $v$ on a circular path of radius $r$ as shown in figure. The average force on it during its motion from $A$ to $B$ is

A

$\frac{\sqrt{3} m v^2}{2 \pi r}$

B

$\frac{m v^2}{r}$

C

$\frac{2 \sqrt{3} m v^2}{\pi r}$

D

$\frac{3 \sqrt{3} m v^2}{4 \pi r}$

Solution

(d)

$F=m a=\frac{m \Delta v}{\Delta t}=\left[\frac{2 v^2 \sin \theta / 2}{r \theta}\right]$

$=m\left[\frac{2 v^2 \sin (2 \pi-2 \pi / 3)}{r \cdot\left(\frac{4 \pi}{3}\right)}\right]$

$=\frac{3 \sqrt{3} m v^2}{4 \pi r}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.