- Home
- Standard 11
- Physics
4-1.Newton's Laws of Motion
medium
A particle of mass $m$ moves with constant speed $v$ on a circular path of radius $r$ as shown in figure. The average force on it during its motion from $A$ to $B$ is

A
$\frac{\sqrt{3} m v^2}{2 \pi r}$
B
$\frac{m v^2}{r}$
C
$\frac{2 \sqrt{3} m v^2}{\pi r}$
D
$\frac{3 \sqrt{3} m v^2}{4 \pi r}$
Solution
(d)
$F=m a=\frac{m \Delta v}{\Delta t}=\left[\frac{2 v^2 \sin \theta / 2}{r \theta}\right]$
$=m\left[\frac{2 v^2 \sin (2 \pi-2 \pi / 3)}{r \cdot\left(\frac{4 \pi}{3}\right)}\right]$
$=\frac{3 \sqrt{3} m v^2}{4 \pi r}$
Standard 11
Physics