A particle of mass $m$ and charge $\mathrm{q}$, moving with velocity $\mathrm{V}$ enters Region $II$ normal to the boundary as shown in the figure. Region $II$ has a uniform magnetic field B perpendicular to the plane of the paper. The length of the Region $II$ is $\ell$. Choose the correct choice$(s)$.

Figure: $Image$

$(A)$ The particle enters Region $III$ only if its velocity $V>\frac{q / B}{m}$

$(B)$ The particle enters Region $III$ only if its velocity $\mathrm{V}<\frac{\mathrm{q} / \mathrm{B}}{\mathrm{m}}$

$(C)$ Path length of the particle in Region $II$ is maximum when velocity $V=\frac{q / B}{m}$

$(D)$ Time spent in Region $II$ is same for any velocity $V$ as long as the particle returns to Region $I$

222707-q

  • [IIT 2008]
  • A

    $(A),(C)$ and $(D)$

  • B

    $(D),(C)$ and $(B)$

  • C

    $(B),(A)$ and $(C)$

  • D

    $(B),(A)$ and $(D)$

Similar Questions

A charged particle moves through a magnetic field perpendicular to its direction. Then

  • [AIEEE 2007]

An electron is moving on a circular path of radius $r$ with speed $v$ in a transverse magnetic field $B$. $e/m$ for it will be

A beam of electrons passes undeflected through mutually perpendicular electric and magnetic fields. It the electric field is switched off, and the same magnetic field is maintained, the electrons move

  • [AIPMT 2007]

An electron with kinetic energy $5 \mathrm{eV}$ enters a region of uniform magnetic field of $3 \mu \mathrm{T}$ perpendicular to its direction. An electric field $\mathrm{E}$ is applied perpendicular to the direction of velocity and magnetic field. The value of $\mathrm{E}$, so that electron moves along the same path, is . . . . . $\mathrm{NC}^{-1}$.

(Given, mass of electron $=9 \times 10^{-31} \mathrm{~kg}$, electric charge $=1.6 \times 10^{-19} \mathrm{C}$ )

  • [JEE MAIN 2024]

A deutron of kinetic energy $50\, keV$ is describing a circular orbit of radius $0.5$ $metre$ in a plane perpendicular to magnetic field $\overrightarrow B $. The kinetic energy of the proton that describes a circular orbit of radius $0.5$ $metre$ in the same plane with the same $\overrightarrow B $ is........$keV$

  • [AIPMT 1991]