6.System of Particles and Rotational Motion
hard

A particle of mass $m$ is projected with a velocity $v$ making an angle of $30^{\circ}$ with the horizontal. The magnitude of angular momentum of the projectile about the point of projection when the particle is at its maximum height $h$ is

A

zero

B

$\frac{\sqrt{3}}{16} \cdot \frac{ mv ^{3}}{ g }$

C

$\frac{{m{v^3}}}{{\sqrt 2 g}}$

D

$\frac{\sqrt{3}}{2} \cdot \frac{ mv ^{2}}{ g }$

(AIEEE-2011)

Solution

Angular momentum, $\overrightarrow{ L }=\overrightarrow{ r } \times m \overrightarrow{ v }$

$\Rightarrow|\overrightarrow{ L }|= rmv \sin \theta$

At maximum point, velocity is $v = v \cos \theta= v \cos (30)=\frac{\sqrt{3} v }{2}$ only (direction: towards horizontal) and no vertical velocity is present.

The maximum height reached will be

$h=\frac{v^{2} \sin ^{2} \theta}{2 g}$

$\Rightarrow h =\frac{ v ^{2} \sin ^{2}\left(30^{\circ}\right)}{2 g }$

$\Rightarrow h =\frac{ v ^{2}}{8 g }$

$L = rmv \sin \theta$

$\Rightarrow L = mvh$

$\Rightarrow L = m \times \frac{\sqrt{3} v }{2} \times \frac{ v ^{2}}{8 g }$

$\Rightarrow L =\frac{\sqrt{3} mv ^{3}}{16 g }$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.