A particle of mass $m$ is projected with a velocity $v$ making an angle of $30^{\circ}$ with the horizontal. The magnitude of angular momentum of the projectile about the point of projection when the particle is at its maximum height $h$ is

  • [AIEEE 2011]
  • A

    zero

  • B

    $\frac{\sqrt{3}}{16} \cdot \frac{ mv ^{3}}{ g }$

  • C

    $\frac{{m{v^3}}}{{\sqrt 2 g}}$

  • D

    $\frac{\sqrt{3}}{2} \cdot \frac{ mv ^{2}}{ g }$

Similar Questions

Two rigid bodies $A$ and $B$ rotate with rotational kinetic energies $E_A$ and $E_B$ respectively.  The moments of inertia of $A$ and $B$ about the axis of rotation are $I_A$ and $I_B$ respectively. If $I_A = I_B/4 \,$and$ \, E_A = 100\ E_B$ the ratio of angular momentum $(L_A)$ of $A$ to the angular momentum $(L_B)$ of $B$ is

Two particles, each of mass $m$ and speed $v$, travel in opposite directions along parallel lines separated by a distance $d$. Show that the angular momentum vector of the two particle system is the same whatever be the point about which the angular momentum is taken.

Two thin circular discs of mass $m$ and $4 m$, having radii of $a$ and $2 a$, respectively, are rigidly fixed by a massless, rigid rod of length $l=\sqrt{24} a$ through their centers. This assembly is laid on a firm and flat surface, and set rolling without slipping on the surface so that the angular speed about the axis of the rod is $\omega$. The angular momentum of the entire assembly about the point ' $O$ ' is $\vec{L}$ (see the figure). Which of the following statement($s$) is(are) true?

($A$) The center of mass of the assembly rotates about the $z$-axis with an angular speed of $\omega / 5$

($B$) The magnitude of angular momentum of center of mass of the assembly about the point $O$ is $81 m a^2 \omega$

($C$) The magnitude of angular momentum of the assembly about its center of mass is $17 \mathrm{ma}^2 \mathrm{\omega} / 2$

($D$) The magnitude of the $z$-component of $\vec{L}$ is $55 \mathrm{ma}^2 \omega$

  • [IIT 2016]

A particle is moving in a circular path of radius $a,$ with a constant velocity $v$ as shown in the figure.The centre of circle is marked by $'C'$. The angular momentum from the origin $O$ can be written as

  • [JEE MAIN 2014]

A particle of mass $m = 5$ is moving with a uniform speed $v = 3\sqrt 2$ in the $XOY$ plane along the line $Y = X + 4$ . The magnitude of the angular momentum of the particle about the origin is .......

  • [AIPMT 1991]