A particle of mass $0.6\, g$ and having charge of $25\, nC$ is moving horizontally with a uniform velocity ${\rm{1}}{\rm{.2}} \times {\rm{1}}{{\rm{0}}^{\rm{4}}}\,m{s^{ - 1}}$ in a uniform magnetic field, then the value of the magnetic induction is $(g = 10\,m{s^{ - 2}})$
Zero
$10\, T$
$20\, T$
$200\, T$
A proton of energy $8\, eV$ is moving in a circular path in a uniform magnetic field. The energy of an alpha particle moving in the same magnetic field and along the same path will be.....$eV$
Show that a force that does no work must be a velocity dependent force.
An electron moves straight inside a charged parallel plate capacitor of uniform charge density. The space between the plates is filled with uniform magnetic field of intensity $B ,$ as shown in the figure, Neglecting effect of gravity, the time of straight line motion of the electron in the capacitor is
A charged particle projected in a limited magnetic field according to figure. The charged particle does not strike to the opposite plate provided
An electron (mass = $9.0 × $${10^{ - 31}}$ $kg$ and charge =$1.6 \times {10^{ - 19}}$ $coulomb$) is moving in a circular orbit in a magnetic field of $1.0 \times {10^{ - 4}}\,weber/{m^2}.$ Its period of revolution is