- Home
- Standard 11
- Physics
2.Motion in Straight Line
hard
A particle with initial velocity $v_0$ moves with constant acceleration in a straight line. Find the distance travelled in $n^{th}$ second.
Option A
Option B
Option C
Option D
Solution
For given particle, distance travelled in $n^{\text {th }}$ second is, $d=$
(distance travelled in $n$ seconds) – (distance travelled in $(n-1)$ second)
$=\left(v_{0} n+1 / 2 a n^{2}\right)-\left(v_{0}(n-1)+\frac{1}{2} a(n-1)^{2}\right)\left(\text { From equation } d=v_{0} t+\frac{1}{2} a t^{2}\right)$
$=\left(v_{0} n+\frac{1}{2} a n^{2}\right)-\left(v_{0} n-v_{0}+a / 2\left(n^{2}-2 n+1\right)\right)$
$=\left(v_{0} n+\frac{1}{2} a n^{2}-v_{0} n+v_{0}-\frac{1}{2} a n^{2}+a n-\frac{a}{2}\right)$
$=v_{0}+a_{n}-\frac{a}{2}$
$\therefore d=v_{0}+\frac{a}{2}(2 n-1)$
Standard 11
Physics