A passenger arriving in a new town wishes to go from the station to a hotel located $10 \;km$ away on a straight road from the station. A dishonest cabman takes him along a circuitous path $23\; km$ long and reaches the hotel in $28 \;min$. What is
$(a)$ the average speed of the taxi,
$(b)$ the magnitude of average velocity ? Are the two equal ?
$(a)$ Total distance travelled $=23 \,km$
Total time taken $=28\, min =\frac{28}{60} \,h$
$\therefore$ Average speed of the taxi $=\frac{\text { Total distance travelled }}{\text { Total time taken }}=\frac{23}{\left(\frac{28}{60}\right)}=49.29 \,km / h$
$(b)$ Distance between the hotel and the station $=10\, km =$ Displacement of the car
$\therefore$ Average velocity $=\frac{10}{\frac{28}{60}}=21.43\, km / h$
Therefore, the two physical quantities (average speed and average velocity) are not equal.
Six vectors, $\overrightarrow a$ through $\overrightarrow f$ have the magnitudes and directions indicated in the figure. Which of the following statements is true ?
The vector that must be added to the vector $\hat i - 3\hat j + 2\hat k$ and $3\hat i + 6\hat j - 7\hat k$ so that the resultant vector is a unit vector along the $y-$axis is
For the resultant of the two vectors to be maximum, what must be the angle between them....... $^o$
Two forces having magnitude $A$ and $\frac{ A }{2}$ are perpendicular to each other. The magnitude of their resultant is
Two forces of magnitude $3\;N$ and $4\;N $ respectively are acting on a body. Calculate the resultant force if the angle between them is $0^o$