A passenger arriving in a new town wishes to go from the station to a hotel located $10 \;km$ away on a straight road from the station. A dishonest cabman takes him along a circuitous path $23\; km$ long and reaches the hotel in $28 \;min$. What is

$(a)$ the average speed of the taxi,

$(b)$ the magnitude of average velocity ? Are the two equal ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(a)$ Total distance travelled $=23 \,km$

Total time taken $=28\, min =\frac{28}{60} \,h$

$\therefore$ Average speed of the taxi $=\frac{\text { Total distance travelled }}{\text { Total time taken }}=\frac{23}{\left(\frac{28}{60}\right)}=49.29 \,km / h$

$(b)$ Distance between the hotel and the station $=10\, km =$ Displacement of the car

$\therefore$ Average velocity $=\frac{10}{\frac{28}{60}}=21.43\, km / h$

Therefore, the two physical quantities (average speed and average velocity) are not equal.

Similar Questions

Two forces of $12 \,N$ and $8 \,N$ act upon a body. The resultant force on the body has maximum value of........$N$

A vector $\vec A $ is rotated by a small angle $\Delta \theta$ radian $( \Delta \theta << 1)$ to get a new vector $\vec B$ In that case $\left| {\vec B - \vec A} \right|$ is

  • [JEE MAIN 2015]

Magnitudes of two vector $\overrightarrow A $ and $\overrightarrow B $ are $4$ units and $3$ units respectively. If these vectors are $(i)$ in same direction $(\theta = 0^o).$ $(ii)$ in opposite direction $(\theta = 180^o)$, then give the magnitude of resultant vector.

Given that $\overrightarrow A + \overrightarrow B + \overrightarrow C= 0$ out of three vectors two are equal in magnitude and the magnitude of third vector is $\sqrt 2 $ times that of either of the two having equal magnitude. Then the angles between vectors are given by

While travelling from one station to another, a car travels $75 \,km$ North, $60\, km$ North-east and $20 \,km $ East. The minimum distance between the two stations is.......$km$