એક મુસાફર એક નવા શહેરમાં સ્ટેશન પર ઊતરીને ટેક્સી કરે છે. સ્ટેશનથી સુરેખ રોડ પર તેની હોટલ $10 \,km$ દૂર છે. ટેક્સી ડ્રાઇવર મુસાફરને $23\, km$ લંબાઈના વાંકાચૂંકા માર્ગે $28 \,min$ માં હોટલ પર પહોંચાડે છે, તો $(a)$ ટેક્સીની સરેરાશ ઝડપ અને $(b)$ સરેરાશ વેગનું મૂલ્ય કેટલું હશે ? શું આ બંને સમાન હશે ?
$(a)$ Total distance travelled $=23 \,km$
Total time taken $=28\, min =\frac{28}{60} \,h$
$\therefore$ Average speed of the taxi $=\frac{\text { Total distance travelled }}{\text { Total time taken }}=\frac{23}{\left(\frac{28}{60}\right)}=49.29 \,km / h$
$(b)$ Distance between the hotel and the station $=10\, km =$ Displacement of the car
$\therefore$ Average velocity $=\frac{10}{\frac{28}{60}}=21.43\, km / h$
Therefore, the two physical quantities (average speed and average velocity) are not equal.
$\overrightarrow A + \overrightarrow B + \overrightarrow C= 0$ આપેલ છે. ત્રણ સદિશ પૈકી બે સદિશોનું મૂલ્ય સમાન છે. અને ત્રીજા સદિશનું મૂલ્ય $\sqrt 2 $ ગણું કે જે બે સમાન મૂલ્ય સિવાયનું છે. તો સદિશો વચ્ચેના ખૂણાઓ શું હશે ?
કોઈ સાઇકલ-સવાર $1 \,km$ ત્રિજ્યાવાળા એક વર્તુળાકાર બગીચાના કેન્દ્ર $O$ થી ગતિ શરૂ કરે છે તથા બગીચાના કિનારા $P$ સુધી પહોંચે છે. ત્યાંથી તે બગીચાના પરિઘ પર સાઈકલ ચલાવતા ચલાવતા $OQ$ માર્ગે (આકૃતિ માં દર્શાવ્યા મુજબ) કેન્દ્ર $O$ પર પાછો આવે છે. જો આ ચક્કર કાપવા માટે તેને $10$ મિનિટ જેટલો સમય લાગતો હોય, તો સાઇકલ-સવારનું
$(a)$ ચોખું સ્થાનાંતર
$(b)$ સરેરાશ વેગ તથા
$(c)$ સરેરાશ ઝડપ કેટલી હશે ?
જો એક કણ બિંદુ $P (2,3,5)$ થી બિંદુ $Q (3,4,5)$ સુધી ગતિ કરે તો તેનો સ્થાનાંતર સદીશ કેટલો થાય?
બે સદિશોની બાદબાકીનો અર્થ શું કરી શકાય ?
$150^{\circ}$ ના ખૂણે રહેલા બે સદીશોનું પરિણામી મુલ્ય $10$ એકમ છે અને તે એક સદિશ સાથે લંબ રીતે ગોકવાયેલ છે. તો નાના સદિશનું માપન મુલ્ય ............. એકમ થાય ?