A pendulum bob has a speed of $3\, m/s$ at its lowest position. The pendulum is $0.5\, m$ long. The speed of the bob, when the length makes an angle of ${60^o}$ to the vertical, will be ..... $m/s$ (If $g = 10\,m/{s^2}$)
$3$
$0.33$
$0.5$
$2$
Two pendulums begin to swing simultaneously. If the ratio of the frequency of oscillations of the two is $7 : 8$, then the ratio of lengths of the two pendulums will be
The angular amplitude of a simple pendulum is $\theta_0$. The maximum tension in its string will be
A pendulum clock that keeps correct time on the earth is taken to the moon it will run (it is given that $g_{Moon} = g_{Earth}/6$ )
Answer the following questions:
$(a)$ Time period of a particle in $SHM$ depends on the force constant $k$ and mass $m$ of the particle:
$T=2 \pi \sqrt{\frac{m}{k}}$. A stmple pendulum executes $SHM$ approximately. Why then is the time pertodof.anondwers period of a pendulum independent of the mass of the pendulum?
$(b)$ The motion of a simple pendulum is approximately stmple harmonte for small angle oscillations. For larger angles of oscillation, a more involved analysis shows that $T$ is greater than $2 \pi \sqrt{\frac{l}{g}} .$ Think of a qualitative argument to appreciate this result.
$(c)$ A man with a wristwatch on his hand falls from the top of a tower. Does the watch give correct time during the free fall?
$(d)$ What is the frequency of oscillation of a simple pendulum mounted in a cabin that is freely failing under gravity?
A pendulum is suspended by a string of length $250\,cm$. The mass of the bob of the pendulum is $200\,g$. The bob is pulled aside until the string is at $60^{\circ}$ with vertical as shown in the figure. After releasing the bob. the maximum velocity attained by the bob will be________ $ms ^{-1}$. (if $g=10\,m / s ^{2}$ )