Mechanical wave (sound wave) in a gas is

  • A

    Transverse

  • B

    Longitudinal

  • C

    Neither transverse nor longitudinal

  • D

    Either transverse or longitudinal

Similar Questions

A steel wire has a length of $12$ $m$ and a mass of $2.10$ $kg$. What will be the speed of a transverse wave on this wire when a tension of $2.06{\rm{ }} \times {10^4}$ $\mathrm{N}$ is applied ?

One end of a long string of linear mass density $8.0 \times 10^{-3}\;kg m ^{-1}$ is connected to an electrically driven tuning fork of frequency $256\; Hz$. The other end passes over a pulley and is tied to a pan containing a mass of $90 \;kg$. The pulley end absorbs all the incoming energy so that reflected waves at this end have negligible amplitude. At $t=0,$ the left end (fork end) of the string $x=0$ has zero transverse displacement $(y=0)$ and is moving along positive $y$ -direction. The amplitude of the wave is $5.0\; cm .$ Write down the transverse displacement $y$ as function of $x$ and $t$ that describes the wave on the string.

The transverse displacement of a string (clamped at its both ends) is given by

$y(x, t)=0.06 \sin \left(\frac{2 \pi}{3} x\right) \cos (120 \pi t)$

where $x$ and $y$ are in $m$ and $t$ in $s$. The length of the string is $1.5\; m$ and its mass is $3.0 \times 10^{-2}\; kg$

Answer the following:

$(a)$ Does the function represent a travelling wave or a stationary wave?

$(b)$ Interpret the wave as a superposition of two waves travelling in opposite directions. What is the wavelength, frequency, and speed of each wave?

$(c)$ Determine the tension in the string.

If the initial tension on a stretched string is doubled, then the ratio of the initial and final speeds of a transverse wave along the string is :

  • [NEET 2022]

A steel wire has a length of $12.0 \;m$ and a mass of $2.10 \;kg .$ What should be the tension in the wire so that speed of a transverse wave on the wire equals the speed of sound in dry air at $20\,^{\circ} C =343\; m s ^{-1}$