A physical quantity $P$ is given by $P= \frac{{{A^3}{B^{\frac{1}{2}}}}}{{{C^{ - 4}}{D^{\frac{3}{2}}}}}$. The quantity which brings in the maximum percentage error in $P$ is

  • A

    $A$

  • B

    $B$

  • C

    $C$

  • D

    $D$

Similar Questions

Two resistance are measured in $Ohm$ and is given as

$R_1 = 3 \Omega \pm 1\%$  and  $R_2 = 6 \Omega \pm 2\%$ When they are connected  in parallel, the percentage error in equivalent resistance is.......... $\%$

A physical quantity $'x'$ is calculated from the relation $x = \frac{{{a^2}{b^3}}}{{c\sqrt d }}$ in $a$,$b$,$c$ and $d$ are $2\%$, $1 \%$, $3\%$ and $4\%$ respectively, what is the percentage error in $x$.

We measure the period of oscillation of a simple pendulum. In successive measurements, the readings turn out to be $2.63 \;s , 2.56 \;s , 2.42\; s , 2.71 \;s$ and $2.80 \;s$. Calculate the absolute errors, relative error or percentage error.

A physical parameter a can be determined by measuring the parameters $b, c, d $ and $e $ using the relation $a =$ ${b^\alpha }{c^\beta }/{d^\gamma }{e^\delta }$. If the maximum errors in the measurement of $b, c, d$ and e are ${b_1}\%$, ${c_1}\%$, ${d_1}\%$ and ${e_1}\%$, then the maximum error in the value of a determined by the experiment is

In an experiment, mass of an object is measured by applying a known force on it, and then measuring its acceleration. If in the experiment, the measured values of applied force and the measured acceleration are $F=10.0 \pm 0.2 \,N$ and $a=1.00 \pm 0.01 \,m / s ^2$, respectively. Then, the mass of the object is ............... $kg$

  • [KVPY 2015]