1.Units, Dimensions and Measurement
hard

A student determined Young's Modulus of elasticity using the formula $Y=\frac{M g L^{3}}{4 b d^{3} \delta} .$ The value of $g$ is taken to be $9.8 \,{m} / {s}^{2}$, without any significant error, his observation are as following.

Physical Quantity Least count of the Equipment used for measurement Observed value
Mass $({M})$ $1\; {g}$ $2\; {kg}$
Length of bar $(L)$ $1\; {mm}$ $1 \;{m}$
Breadth of bar $(b)$ $0.1\; {mm}$ $4\; {cm}$
Thickness of bar $(d)$ $0.01\; {mm}$ $0.4 \;{cm}$
Depression $(\delta)$ $0.01\; {mm}$ $5 \;{mm}$

Then the fractional error in the measurement of ${Y}$ is

A

$0.0083$

B

$0.0155$

C

$0.155$

D

$0.083$

(JEE MAIN-2021)

Solution

${y}=\frac{{MgL}^{3}}{4 {bd}^{3} \delta}$

$\frac{\Delta {y}}{{y}}=\frac{\Delta {M}}{{M}}+\frac{3 \Delta {L}}{{L}}+\frac{\Delta {b}}{{b}}+\frac{3 \Delta {d}}{{d}}+\frac{\Delta \delta}{\delta}$

$\frac{\Delta {y}}{{y}}=\frac{10^{-3}}{2}+\frac{3 \times 10^{-3}}{1}+\frac{10^{-2}}{4}+\frac{3 \times 10^{-2}}{4}+\frac{10^{-2}}{5}$

$=10^{-3}[0.5+3+2.5+7.5+2]=0.0155$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.