A student determined Young's Modulus of elasticity using the formula $Y=\frac{M g L^{3}}{4 b d^{3} \delta} .$ The value of $g$ is taken to be $9.8 \,{m} / {s}^{2}$, without any significant error, his observation are as following.

Physical Quantity Least count of the Equipment used for measurement Observed value
Mass $({M})$ $1\; {g}$ $2\; {kg}$
Length of bar $(L)$ $1\; {mm}$ $1 \;{m}$
Breadth of bar $(b)$ $0.1\; {mm}$ $4\; {cm}$
Thickness of bar $(d)$ $0.01\; {mm}$ $0.4 \;{cm}$
Depression $(\delta)$ $0.01\; {mm}$ $5 \;{mm}$

Then the fractional error in the measurement of ${Y}$ is

  • [JEE MAIN 2021]
  • A

    $0.0083$

  • B

    $0.0155$

  • C

    $0.155$

  • D

    $0.083$

Similar Questions

The most accurate reading of the length of a $6.28 \,cm$ long fibre is ............... $cm$

A students measures the distance traversed in free fall of a body, the initially at rest, in a given time. He uses this data to estimate $g$ , the acceleration due to gravity . If the maximum percentage errors in measurement of the distance and the time are $e_1$ and $e_2$ respectively, the percentage error in the estimation of $g$ is 

  • [AIPMT 2010]

If $a, b, c$ are the percentage errors in the measurement of $A, B$ and $C$, then the percentage error in $ABC$ would be approximately

The radius ( $\mathrm{r})$, length $(l)$ and resistance $(\mathrm{R})$ of a metal wire was measured in the laboratory as
$\mathrm{r}=(0.35 \pm 0.05) \mathrm{cm}$
$\mathrm{R}=(100 \pm 10) \mathrm{ohm}$
$l=(15 \pm 0.2) \mathrm{cm}$
The percentage error in resistivity of the material of the wire is :

  • [JEE MAIN 2024]

What is error in measurement, done by any instrument ?