A plane $EM$ wave travelling along $z-$ direction is described$\vec E = {E_0}\,\sin \,(kz - \omega t)\hat i$ and $\vec B = {B_0}\,\sin \,(kz - \omega t)\hat j$. Show that
$(i)$ The average energy density of the wave is given by $U_{av} = \frac{1}{4}{ \in _0}E_0^2 + \frac{1}{4}.\frac{{B_0^2}}{{{\mu _0}}}$
$(ii)$ The time averaged intensity of the wave is given by $ I_{av}= \frac{1}{2}c{ \in _0}E_0^2$ વડે આપવામાં આવે છે.
$(i)$ In electromagnetic waves due to electric field vector and magnetic field vector waves carry energy $\overrightarrow{\mathrm{E}}$ and $\overrightarrow{\mathrm{B}}$ varies with time and position.
- Let $\mathrm{E}$ and $\mathrm{B}$ is average value at given time,
$U_{E}=\frac{1}{2} \epsilon_{0} E^{2} \text { and }$
energy density due to magnetic field $B$,
$\mathrm{U}_{\mathrm{B}}=\frac{1}{2} \frac{\mathrm{B}^{2}}{\mu_{0}}$
Total average energy density of $EM$ waves,
$\mathrm{U}_{\text {average }}=\mathrm{U}_{\mathrm{E}}+\mathrm{U}_{\mathrm{B}}=\frac{1}{2} \mathrm{E}_{0} \mathrm{E}^{2}+\frac{1}{2} \frac{\mathrm{B}^{2}}{\mu_{0}}$
Consider$ EM$ wave propagating in $z$-direction hence electric field and magnetic field will be represented as
$\overrightarrow{\mathrm{E}}=\mathrm{E}_{0} \sin (k z-\omega t) \text { and }$
$\overrightarrow{\mathrm{B}}=\mathrm{B}_{0} \sin (k z-\omega t)$
Average value of $\mathrm{E}^{2}$ over one cycle (periodic time)
$\left\langle\mathrm{E}^{2}\right\rangle=\frac{\mathrm{E}_{0}^{2}}{2}$
Hence $U_{\text {average }}=\frac{1}{2} E_{0} \frac{E_{0}^{2}}{2}+\frac{1}{2} \mu_{0}\left(\frac{B_{0}^{2}}{2}\right)$
So, $U_{\text {avearge }}=\frac{1}{4}\left[\epsilon_{0} E_{0}^{2}+\frac{B_{0}^{2}}{4 \mu_{0}}\right]$
`$(ii)$ Now $\mathrm{E}_{0}=c \mathrm{~B}_{0}$ and $c=\frac{1}{\sqrt{\mu_{0} \in_{0}}}$ In equation (1) if $U_{\text {average }}=0$, then
$\frac{1}{4} \frac{\mathrm{B}_{0}^{2}}{\mu_{0}}=-\frac{1}{4} \epsilon_{0} \mathrm{E}_{0}^{2}$
$=-\frac{1}{4} \cdot \frac{\mathrm{E}_{0}^{2}}{\mu_{0} c^{2}}\left[\because c=\frac{1}{\sqrt{\mu_{0} \epsilon_{0}}}\right]$
Neglecting negative sign,
$\frac{1}{4} \frac{\mathrm{B}_{0}^{2}}{\mu_{0}}=\frac{1}{4} \frac{\mathrm{E}_{0}^{2} / c^{2}}{\mu_{0}}=\frac{\mathrm{E}_{0}^{2}}{4 \mu_{0}} \cdot \mu_{0} \in_{0} \quad\left[c^{2}=\frac{1}{\mu_{0} \mathrm{E}_{0}}\right]$
A plane electromagnetic wave propagating in the direction of the unit vector $\hat{ n }$ with a speed $c$ is described by electric and magnetic field vectors $E$ and $B$, respectively. Which of the following relations (in $SI$ units) between $E$ and $B$ can be ruled out on dimensional grounds alone?
The energy associated with electric field is $(U_E)$ and with magnetic field is $(U_B)$ for an electromagnetic wave in free space. Then
Show that the radiation pressure exerted by an $EM$ wave of intensity $I$ on a surface kept in vacuum is $\frac{I}{c}$.
The electric field component of a monochromatic radiation is given by
$\vec E = 2{E_0}\,\hat i\,\cos\, kz\,\cos\, \omega t$
Its magnetic field $\vec B$ is then given by
In a plane electromagnetic wave, the electric field oscillates sinusoidally at a frequency of $2.0 \times 10^{10}\; Hz$ and amplitude $48\; Vm ^{-1}$
$(a)$ What is the wavelength of the wave?
$(b)$ What is the amplitude of the oscillating magnetic field?
$(c)$ Show that the average energy density of the $E$ field equals the average energy density of the $B$ field. $\left[c=3 \times 10^{8} \;m s ^{-1} .\right]$