An electromagnetic wave in vacuum has the electric and magnetic field $\vec E$ and $\vec B$ , which are always perpendicular to each other. The direction of polarization is given by $\vec X$ and that of wave propagation by $\vec k$ . Then

  • [AIEEE 2012]
  • A

    $\overrightarrow {X\;} $ $॥ $ $\vec B$ and $\overrightarrow {\;k} $ ॥$\overrightarrow {\;B} $ $\times $ $\vec E$

  • B

    $\overrightarrow {X\;} $ $॥ $ $\vec E $ and $\overrightarrow {\;k} $ ॥$\overrightarrow {\;E} $  $\times $ $\vec B$

  • C

    $\overrightarrow{X\;} $ $॥ $ $\vec B$ and $\overrightarrow {\;k} $ ॥$\overrightarrow {\;E} $ $\times $ $\vec B$

  • D

    $\overrightarrow {X\;} $ $॥ $ $\vec E$ and $\overrightarrow {\;k} $ ॥$\overrightarrow {\;B} $ $\times $ $\vec E$

Similar Questions

If a source of electromagnetic radiation having power $15 kW$ produces $10^{16}$ photons per second, the radiation belongs to a part of spectrum is.(Take Planck constant $h =6 \times 10^{-34}\,Js$ )

  • [JEE MAIN 2023]

The photon energy in units of $eV$ for electromagnetic wave of wavelength $2\,cm$ is

A plane $EM$ wave travelling in vacuum along $z-$ direction is given by $\vec E = {E_0}\,\,\sin (kz - \omega t)\hat i$ and $\vec B = {B_0}\,\,\sin (kz - \omega t)\hat j$.

$(i)$ Evaluate $\int {\vec E.\overrightarrow {dl} } $ over the rectangular loop $1234$ shown in figure.

$(ii)$ Evaluate $\int {\vec B} .\overrightarrow {ds} $ over the surface bounded by loop $1234$.

$(iii)$ $\int {\vec E.\overrightarrow {dl}  =  - \frac{{d{\phi _E}}}{{dt}}} $ to prove $\frac{{{E_0}}}{{{B_0}}} = c$

$(iv)$ By using similar process and the equation $\int {\vec B} .\overrightarrow {dl}  = {\mu _0}I + { \in _0}\frac{{d{\phi _E}}}{{dt}}$ , prove that  $c = \frac{1}{{\sqrt {{\mu _0}{ \in _0}} }}$ 

A radar sends an electromagnetic signal of electric field $\left( E _{0}\right)=2.25\,V / m$ and magnetic field $\left( B _{0}\right)=1.5 \times 10^{-8}\,T$ which strikes a target on line of sight at a distance of $3\,km$ in a medium After that, a pail of signal $(echo)$ reflects back towards the radar vitli same velocity and by same path. If the signal was transmitted at time $t_{0}$ from radar. then after how much time (in  $\times 10^{-5}\,s$) echo will reach to the radar?

  • [JEE MAIN 2022]

The magnetic field of a plane electromagnetic wave is given by

$\vec B\, = {B_0}\hat i\,[\cos \,(kz - \omega t)]\, + \,{B_1}\hat j\,\cos \,(kz - \omega t)$ where ${B_0} = 3 \times {10^{-5}}\,T$ and ${B_1} = 2 \times {10^{-6}}\,T$. The rms value of the force experienced by a stationary charge $Q = 10^{-4} \,C$ at $z = 0$ is closet to

  • [JEE MAIN 2019]