7.Gravitation
hard

પૃથ્વી જેટલી ઘનતા અને ગુરુત્વાકર્ષણ અચળાંક $G$ બમણો ધરાવતા ગ્રહ છે. તો ગ્રહ અને પૃથ્વીના ગુરુત્વપ્રવેગનો ગુણોતર શોધો.

A

$1:4$

B

$1:5$

C

$1:2$

D

$3:2$

(AIIMS-2019)

Solution

The acceleration due to gravity at the surface of earth is,

$g=\frac{G M}{R^{2}}$ $\ldots( I )$

And the mass is,

$M=V \rho$

$M=\frac{4 \pi R^{3}}{3} \rho$

It is given that,

$\rho_{e}=\rho_{p} \text { and } G_{p}=2 G_{e}$

Substitute the values in equation $(I).$

$\frac{g_{e}}{g_{p}}=\frac{\frac{G_{e}\left(\frac{4 \pi R_{e}^{3}}{3} \rho_{e}\right)}{R_{e}^{2}}}{\frac{G_{p}\left(\frac{4 \pi R_{p}^{3}}{3} \rho_{p}\right)}{R_{p}^{2}}}$

$1=\frac{G_{e} R_{e}^{3} \times R_{p}^{2}}{2 G_{e} R_{p}^{3} \times R_{e}^{2}}$

$\frac{R_{p}}{R_{e}}=\frac{1}{2}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.