A point $P$ moves in counter clock wise direction on a circular path as shown in figure. The movement of $'P'$ is such that it sweeps out a length $S = t^3 + 5$, where $'S'$ is in meter and $t$ is in seconds. The radius of the path is $20\, m$. The acceleration of $'P'$ when $t = 2\, sec$. is nearly ......... $m/s^2$
$14$
$13$
$12$
$7.2$
ball is thrown from a point with a speed $‘v_0$’ at an elevation angle of $\theta $ . From the same point and at the same instant, a person starts running with a constant speed $\frac{{'{v_0}'}}{2}$ to catch the ball. Will the person be able to catch the ball? If yes, what should be the angle of projection $\theta $ ?
Two seconds after projection a projectile is travelling in a direction inclined at $30^o$ to horizontal, after one more second it is travelling horizontally. What is the magnitude and direction of its velocity at initial point
An aircraft executes a horizontal loop with a speed of $150 \,m/s$ with its, wings banked at an angle of ${12^o }$. The radius of the loop is .......... $km$. $(g = 10\,\,m/{s^2})$
A projectile is projected with speed $u$ of an angle of $60^o$ with horizontal from the foot of an inclined plane. If the projectile hits the inclined plane horizontally, the range on inclined plane will be :-