A point charge $Q$ is placed in uniform electric field $\vec E = E_1 \hat i + E_2\hat j$ at position $(a, b)$. Find work done in moving it to position $(c, d)$
Zero
$\{E_1(c -a) + E_2(d-b)\}Q$
$\{E_1\, ac + E_2\, bd\}Q$
$\{E_1c + E_2d\}Q$
When a proton is accelerated through $1\,V$, then its kinetic energy will be.....$eV$
In a region, electric field varies as $E = 2x^2 -4$ where $x$ is the distance in metre from origin along $x-$ axis. A positive charge of $1\,\mu C$ is released with minimum velocity from infinity for crossing the origin, then
An electron enters in high potential region ${V_2}$ from lower potential region ${V_1}$ then its velocity
Three particles, each having a charge of $10\,\mu C$ are placed at the corners of an equilateral triangle of side $10\,cm$. The electrostatic potential energy of the system is.....$J$ (Given $\frac{1}{{4\pi {\varepsilon _0}}} = 9 \times {10^9}\,N - {m^2}/{C^2}$)
$(a)$ Determine the electrostatic potential energy of a system consisting of two charges $7 \;\mu C$ and $-2\; \mu C$ (and with no external field) placed at $(-9 \;cm , 0,0)$ and $(9\; cm , 0,0)$ respectively.
$(b)$ How much work is required to separate the two charges infinitely away from each other?
$(c)$ Suppose that the same system of charges is now placed in an external electric field $E=A\left(1 / r^{2}\right) ; A=9 \times 10^{5} \;C m ^{-2} .$ What would the electrostatic energy of the configuration be?