आरेख में दर्शाए अनुसार $+12\, \mu C$ का कोई बिन्दु आवेश $12 \,cm$ भुजा वाले किसी वर्ग के केन्द्र के ऊर्ध्वाधर ऊपर $6 \,cm$ दूरी पर स्थित है। इस वर्ग से गुजरने वाले विधुत फ्लक्स का परिमाण $......\,\times 10^{3} Nm ^{2} / C$ होगा।
$452$
$381$
$226$
$113$
विद्युत बल रेखाओं के बारे में असत्य कथन है
विद्युत फ्लक्स का $S.I.$ मात्रक है
$z$-अक्ष के समांतर एक अनंत लम्बाई की पतली अचालक (non-conducting) तार पर एकसमान रेखीय आवेश घनत्व (uniform line charge density) $\lambda$ है। यह तार $R$ त्रिज्या वाले एक पतले अचालक गोलीय कोश (spherical shell) को इस प्रकार भेदता है कि आर्क (arc) $P Q$, गोलीय कोश के केंद्र $O$ पर $120^{\circ}$ का कोण बनाती है, जैसा कि चित्र में दर्शाया गया है। मुक्त आकाश का पराविधुतक (permittivity of free space) $\epsilon_0$ है। निम्नलिखित कथनों में से कौन सा (से) सही है (हैं)?
$(A)$ कोश से गुजरने वाला विधुत फ्लक्स (electric flux) $\sqrt{3} R \lambda / \epsilon_0$ है
$(B)$ विधुत क्षेत्र (electric field) का $z$-घटक ( $z$-component) कोश के पृष्ठ (surface) के सभी बिन्दुओं पर शून्य है
$(C)$ कोश से गुजरने वाला विधुत फ्लक्स (electric flux) $\sqrt{2} R \lambda / \epsilon_0$ है
$(D)$ विधुत क्षेत्र (electric field) कोश के पृप्ठ के सभी बिन्दुओं पर लम्बवत (normal) है
एक आदर्श चालक के भीतर एक दीर्घवृत्तीय गुहिका (ellipsoidal cavity) स्थित है। गुहिका के केन्द्र पर एक धनात्मक आवेश $q$ रखा है। गुहिका की सतह पर दो बिन्दु $A$ और $B$ हैं। तब
एकसमान पृष्ठीय आवेश घनत्व $\sigma_{+}$व $\sigma_{-}$वाली दो आवेशित पतली अनन्त लम्बी समतलीय शीटों पर विचार कीजिये जहाँ $\left|\sigma_{+}\right|>\left|\sigma_{-}\right|$है, तथा ये आपस में समकोण पर प्रतिच्छेदित करती है। इस निकाय के लिये विधुत क्षेत्र रेखाओं का सर्वाधिक सही चित्रण होगा:-