- Home
- Standard 12
- Physics
चित्र में दर्शाए अनुसार $10 \,cm$ भुजा के किसी वर्ग के केंद्र से ठीक $5\, cm$ ऊँचाई पर कोई $+10 \mu C$ आवेश रखा है। इस वर्ग से गुजरने वाले वैध्यूत फ्लक्स का परिमाण क्या है? (संकेत : वर्ग को $10 \,cm$ किनारे के किसी घन का एक फलक मानिए।)

$6.34 \times 10^{6} \;N \;m ^{2} C ^{-1}$
$3.66 \times 10^{6} \;N \;m ^{2} C ^{-1}$
$1.88 \times 10^{5} \;N \;m ^{2} C ^{-1}$
$8.66 \times 10^{5} \;N \;m ^{2} C ^{-1}$
Solution
The square can be considered as one face of a cube of edge $10 \,cm$ with a centre where charge $q$ is placed. According to Gauss's theorem for a cube, total electric flux is through all its six faces.
$\phi_{\text {Total}}=\frac{q}{\varepsilon_{0}}$
Hence, electric flux through one face of the cube i.e., through the square is
$\phi=\frac{\phi_{\text {Total}}}{6}=\frac{1}{6} \cdot \frac{q}{\varepsilon_{0}}$
Where, $\varepsilon_{0}=$ Permittivity of free space $=8.854 \times 10^{-12}\, N ^{-1} \,C ^{2} \,m ^{-2}$
$q=10\, \mu \,C=10 \times 10^{-6} \,C$
$=1.88 \times 10^{5} \,N \,m ^{2} \,C ^{-1}$
$\therefore \phi=\frac{1}{6} \cdot \frac{10 \times 10^{-6}}{8.854 \times 10^{-12}}$
Therefore, electric flux through the square is $1.88 \times 10^{5} \;N \;m ^{2} \,C ^{-1}$