A point source emits sound equally in all directions in a non-absorbing medium. Two points $P$ and $Q$ are at a distance of $9$ meters and $25$ meters respectively from the source. The ratio of the amplitudes of the waves at $P$ and $Q$ is
$5:3$
$3:5$
$25:9$
$625:81$
A uniform rope of length $L$ and mass $m_1$ hangs vertically from a rigid support. A block of mass $m_2$ is attached to the free end of the rope. A transverse pulse of wavelength $\lambda _1$ is produced at the lower end of the rope. The wavelength of the pulse when it reaches the top of the rope is $\lambda _2$ . The ratio $\lambda _2/\lambda _1$ is
In the standing wave shown, particles at the positions $A$ and $B$ have a phase difference of
A train whistling at constant frequency is moving towards a station at a constant speed $V$. The train goes past a stationary observer on the station. The frequency $n'$ of the sound as heard by the observer is plotted as a function of time $t (Fig.)$ . Identify the expected curve
Two cars $A$ and $B$ are moving in the same direction with speeds $36\,km/hr$ and $54\,km/hr$ respectively. Car $B$ is ahead of $A$. If $A$ sounds horn of frequency $1000\,Hz$ and the speed of sound in air is $340\,m/s$, the frequency of sound received by the driver of car $B$ is .................. $\mathrm{Hz}$
Speed of sound waves in a fluid depends upon