A point source of $100\,W$ emits light with $5 \%$ efficiency. At a distance of $5\,m$ from the source, the intensity produced by the electric field component is :

  • [JEE MAIN 2023]
  • A

    $\frac{1}{2 \pi} \frac{ W }{ m ^2}$

  • B

    $\frac{1}{40 \pi} \frac{ W }{ m ^2}$

  • C

    $\frac{1}{10 \pi} \frac{W}{ m ^2}$

  • D

    $\frac{1}{20 \pi} \frac{ W }{ m ^2}$

Similar Questions

An electromagnetic wave is represented by the electric field $\vec E = {E_0}\hat n\,\sin \,\left[ {\omega t + \left( {6y - 8z} \right)} \right]$. Taking unit vectors in $x, y$ and $z$ directions to be $\hat i,\hat j,\hat k$ ,the direction of propogation $\hat s$, is

  • [JEE MAIN 2019]

The electric field of a plane polarized electromagnetic wave in free space at time $t = 0$ is given by an expression

$\vec E(x,y) = 10\hat j\, cos[(6x + 8z)]$

The magnetic field $\vec B (x,z, t)$ is given by : ($c$ is the velocity of light)

  • [JEE MAIN 2019]

The magnetic field of a beam emerging from a filter facing a floodlight is given by B${B_0} = 12 \times {10^{ - 8}}\,\sin \,(1.20 \times {10^7}\,z - 3.60 \times {10^{15}}t)T$. What is the average intensity of the beam ?

An electromagnetic wave in vacuum has the electric and magnetic field $\vec E$ and $\vec B$ , which are always perpendicular to each other. The direction of polarization is given by $\vec X$ and that of wave propagation by $\vec k$ . Then

  • [AIEEE 2012]

The direction of poynting vector represents