The magnetic field in a plane electromagnetic wave is $\mathrm{B}_y=\left(3.5 \times 10^{-7}\right) \sin \left(1.5 \times 10^3 \mathrm{x}+0.5\right.$ $\left.\times 10^{11} \mathrm{t}\right) \mathrm{T}$. The corresponding electric field will be
$\mathrm{E}_{\mathrm{y}}=1.17 \sin \left(1.5 \times 10^3 \mathrm{x}+0.5 \times 10^{11} \mathrm{t}\right) \mathrm{Vm}^1$
$\mathrm{E}_{\mathrm{x}}=105 \sin \left(1.5 \times 10^3 \mathrm{x}+0.5 \times 10^{11} \mathrm{t}\right) \mathrm{Vm}^{-1}$
$\mathrm{E}_z=1.17 \sin \left(1.5 \times 10^5 \mathrm{x}+0.5 \times 10^{11} \mathrm{t}\right) \mathrm{Vm}^{-1}$
$\mathrm{E}_{\mathrm{y}}=10.5 \sin \left(1.5 \times 10^3 \mathrm{x}+0.5 \times 10^{11} \mathrm{t}\right) \mathrm{Vm}^{-1}$
Light wave traveling in air along $x$-direction is given by $E _{ y }=540 \sin \pi \times 10^{4}( x - ct ) Vm ^{-1}$. Then, the peak value of magnetic field of wave will be $\dots \times 10^{-7}\,T$ (Given $c =3 \times 10^{8}\,ms ^{-1}$ )
The ratio of contributions made by the electric field and magnetic filed components to the intensity of an electromagnetic wave is
If $c $ is the speed of electromagnetic waves in vacuum, its speed in a medium of dielectric constant $K$ and relative permeability ${\mu _r}$ is
If electromagnetic wave is propagating in $x-$ direction and electric and magnetic field are in $y$ and $z-$ direction respectively then write equation of $Ey$ and $Bz$.
The photon energy in units of $eV$ for electromagnetic wave of wavelength $2\,cm$ is