The magnetic field in a plane electromagnetic wave is $\mathrm{B}_y=\left(3.5 \times 10^{-7}\right) \sin \left(1.5 \times 10^3 \mathrm{x}+0.5\right.$ $\left.\times 10^{11} \mathrm{t}\right) \mathrm{T}$. The corresponding electric field will be
$\mathrm{E}_{\mathrm{y}}=1.17 \sin \left(1.5 \times 10^3 \mathrm{x}+0.5 \times 10^{11} \mathrm{t}\right) \mathrm{Vm}^1$
$\mathrm{E}_{\mathrm{x}}=105 \sin \left(1.5 \times 10^3 \mathrm{x}+0.5 \times 10^{11} \mathrm{t}\right) \mathrm{Vm}^{-1}$
$\mathrm{E}_z=1.17 \sin \left(1.5 \times 10^5 \mathrm{x}+0.5 \times 10^{11} \mathrm{t}\right) \mathrm{Vm}^{-1}$
$\mathrm{E}_{\mathrm{y}}=10.5 \sin \left(1.5 \times 10^3 \mathrm{x}+0.5 \times 10^{11} \mathrm{t}\right) \mathrm{Vm}^{-1}$
A plane electromagnetic wave of frequency $100\, MHz$ is travelling in vacuum along the $x -$ direction. At a particular point in space and time, $\overrightarrow{ B }=2.0 \times 10^{-8} \hat{ k } T$. (where, $\hat{ k }$ is unit vector along $z-$direction) What is $\overrightarrow{ E }$ at this point ?
A plane electromagnetic wave of wave intensity $6\, W/ m^2$ strikes a small mirror area $40 cm^2$, held perpendicular to the approaching wave. The momentum transferred by the wave to the mirror each second will be
Write standard equation for waves.
The magnetic field of a beam emerging from a filter facing a floodlight is given by B${B_0} = 12 \times {10^{ - 8}}\,\sin \,(1.20 \times {10^7}\,z - 3.60 \times {10^{15}}t)T$. What is the average intensity of the beam ?
In the $EM$ wave the amplitude of magnetic field $H_0$ and the amplitude of electric field $E_o$ at any place are related as