8.Electromagnetic waves
hard

The magnetic field in a plane electromagnetic wave is $\mathrm{B}_y=\left(3.5 \times 10^{-7}\right) \sin \left(1.5 \times 10^3 \mathrm{x}+0.5\right.$ $\left.\times 10^{11} \mathrm{t}\right) \mathrm{T}$. The corresponding electric field will be

A

$\mathrm{E}_{\mathrm{y}}=1.17 \sin \left(1.5 \times 10^3 \mathrm{x}+0.5 \times 10^{11} \mathrm{t}\right) \mathrm{Vm}^1$

B

$\mathrm{E}_{\mathrm{x}}=105 \sin \left(1.5 \times 10^3 \mathrm{x}+0.5 \times 10^{11} \mathrm{t}\right) \mathrm{Vm}^{-1}$

C

$\mathrm{E}_z=1.17 \sin \left(1.5 \times 10^5 \mathrm{x}+0.5 \times 10^{11} \mathrm{t}\right) \mathrm{Vm}^{-1}$

D

$\mathrm{E}_{\mathrm{y}}=10.5 \sin \left(1.5 \times 10^3 \mathrm{x}+0.5 \times 10^{11} \mathrm{t}\right) \mathrm{Vm}^{-1}$

(JEE MAIN-2024)

Solution

$\mathrm{E}_0=\mathrm{B}_0 \mathrm{C}$

$\mathrm{E}_0=3 \times 10^8 \times\left(3.5 \times 10^{-7}\right) \sin \left(1.5 \times 10^3 \mathrm{x}+0.5 \times 10^{11} \mathrm{t}\right)$

$\mathrm{E}_0=105 \sin \left(1.5 \times 10^3 \mathrm{x}+0.5 \times 10^{11} \mathrm{t}\right) \mathrm{Vm}^{-1}$

Data inconsistent while calculating speed of wave. You can challenge for data.

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.