A positively charged $(+ q)$ particle of mass $m$ has kinetic energy $K$ enters vertically downward in a horizontal field of magnetic induction $\overrightarrow B $ . The acceleration of the particle is :-
$qB\sqrt {\frac{{2K}}{m}} $
$\frac{{qB\sqrt {2K} }}{{{{(m)}^{\frac{3}{2}}}}}$
$\frac{{2qB}}{{{{(m)}^{\frac{3}{2}}}}}\sqrt {2K} $
$2qB\sqrt {\frac{{2K}}{m}} $
A proton of mass $1.67\times10^{-27}\, kg$ and charge $1.6\times10^{-19}\, C$ is projected with a speed of $2\times10^6\, m/s$ at an angle of $60^o$ to the $X-$ axis. If a uniform magnetic field of $0.104\, tesla$ is applied along the $Y-$ axis, the path of the proton is
In a mass spectrometer used for measuring the masses of ions, the ions are initially accelerated by an electric potential $V$ and then made to describe semicircular paths of radius $R$ using a magnetic field $B$. If $V$ and $B$ are kept constant, the ratio $\left( {\frac{{{\text{charge on the ion}}}}{{{\text{mass of the ion}}}}} \right)$ will be proportional to
A charged particle enters a magnetic field $H$ with its initial velocity making an angle of $45^\circ $ with $H$. The path of the particle will be
The magnetic force acting on charged particle of charge $2\,\mu C$ in magnetic field of $2\, T$ acting in $y-$ direction , when the particle velocity is $\left( {2\hat i + 3\hat j} \right) \times {10^6}\,m{s^{ - 1}}$ is
A particle of charge $q$ and mass $m$ is moving with a velocity $-v \hat{ i }(v \neq 0)$ towards a large screen placed in the $Y - Z$ plane at a distance $d.$ If there is a magnetic field $\overrightarrow{ B }= B _{0} \hat{ k },$ the minimum value of $v$ for which the particle will not hit the screen is