एक प्रक्षेप्य को प्रारांभिक वेग $(\hat{i}+2 \hat{j}) m / s$ दी जाती है, जहाँ $\hat{i}$ जमीन या क्षैतिज के अनुदिश तथा $\hat{j}$ उर्ध्वांधर के अनुदिश इकाई/सदिश है। यदि $g =10\, m / s ^{2}$ है, तो इसके प्रक्षेप्य पथ का समीकरण होगा
$y= x- 5x^2$
$y= 2x- 5x^2$
$4y= 2x- 5x^2$
$4y= 2x- 25x^2$
किसी दिक्स्थान पर एक स्वेच्छ गति के लिए निम्नलिखित संबंधों में से कौन-सा सत्य है ?
$(a)$ $v _{\text {औसत }}=(1 / 2)\left( v \left(t_{1}\right)+ v \left(t_{2}\right)\right)$
$(b)$ $v _{\text {औमन }}=\left[ r \left(t_{2}\right)- r \left(t_{1}\right)\right] /\left(t_{2}-t_{1}\right)$
$(c)$ $v (t)= v (0)+ a t$
$(d)$ $r (t)= r (0)+ v (0) t+(1 / 2) a t^{2}$
$(e)$ $a _{\text {औमन }}=\left[ v \left(t_{2}\right)- v \left(t_{1}\right)\right] /\left(t_{2}-t_{1}\right)$
यहाँ ' औसत' का आशय समय अंतराल $t_{2}$ व $t_{1}$ से संबांधित भौतिक राशि के औसत मान से है ।
लिस्ट $I$ में चार तंत्र (system) वर्णित है, प्रत्येक में दो कण $A$ और $B$ की सापेक्ष गति (relative speed) का चित्रण किया गया है। लिस्ट $II$ में उनकी सापेक्ष गति ( $ms ^{-1}$ में) का संभावित परिमाण समय $t=\frac{\pi}{3} s$ पर दिया गया है।
निम्न में से कौनसा एक विकल्प सही है ?
किसी सदिश में परिमाण व दिशा दोनों होते हैं। क्या दिक्स्थान में इसकी कोई स्थिति होती है ? क्या यह समय के साथ परिवर्तित हो सकता है। क्या दिक्स्थान में भिन्न स्थानों पर दो बराबर सदिशों $a$ व $b$ का समान भौतिक प्रभाव अवश्य पड़ेगा ? अपने उत्तर के समर्थन में उदाहरण दीजिए।