A public park, in the form of a square, has an area of $(100 \pm 0.2)\; m ^2$. The side of park is ............ $m$
$(10 \pm 0.01)$
$(10 \pm 0.1)$
$(10 \pm 0.02)$
$(10 \pm 0.2)$
The resistance $R =\frac{V}{I}$ where $V= 100 \pm 5 \,volts$ and $ I = 10 \pm 0.2$ amperes. What is the total error in $R$ ......... $\%$
Two resistors of resistances $R_{1}=100 \pm 3$ $ohm$ and $R_{2}=200 \pm 4$ $ohm$ are connected $(a)$ in series, $(b)$ in parallel. Find the equivalent resistance of the $(a)$ series combination, $(b)$ parallel combination. Use for $(a)$ the relation $R=R_{1}+R_{2}$ and for $(b)$ $\frac{1}{R^{\prime}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$ and $\frac{\Delta R^{\prime}}{R^{\prime 2}}=\frac{\Delta R_{1}}{R_{1}^{2}}+\frac{\Delta R_{2}}{R_{2}^{2}}$
Can error be completely eliminated ?
The percentage error in measurement of a physical quantity $m$ given by $m = \pi \tan \theta $ is minimum when $\theta $ $=$ .......... $^o$ (Assume that error in $\theta $ remain constant)
Write a note on combination of error.