A radioactive sample consists of two distinct species having equal number of atoms $N_0$ initially. The mean-life of one species is $\tau $ and of the other is $5\tau $. The decay products in both cases is stable. The total number of radioactive nuclei at $t = 5\tau $ is
${N_0}\left( {\frac{{{e^5} + 1}}{{{e^5}}}} \right)$
${N_0}\left( {\frac{{{e^4} + 1}}{{{e^5}}}} \right)$
${N_0}\left( {\frac{{e + {e^5}}}{{{e^5}}}} \right)$
$N_0e^{-3}$
Age of a tree is determined using radio-isotope of
Assertion : ${}^{90}Sr$ from the radioactive fall out from a nuclear bomb ends up in the bones of human beings through the milk consumed by them. It causes impairment of the production of red blood cells.
Reason : The energetic $\beta - $ particles emitted in the decay of ${}^{90}Sr$ damage the bone marrow
Using a nuclear counter the count rate of emitted particles from a radioactive source is measured. At $t = 0$ it was $1600$ counts per second and $t = 8\, seconds$ it was $100$ counts per second. The count rate observed, as counts per second, at $t = 6\, seconds$ is close to
According to classical physics, $10^{-15}\ m$ is distance of closest approach $(d_c)$ for fusion to occur between two protons. A more accurate and quantum approach says that ${d_c} = \frac{{{\lambda _p}}}{{\sqrt 2 }}$ where $'\lambda _p'$ is de-broglie's wavelength of proton when they were far apart. Using quantum approach, find equation of temperature at centre of star. [Given: $M_p$ is mass of proton, $k$ is boltzman constant]
If the half life of a radioactive sample is $10\, hours$, its mean life is ..........$hours$