13.Nuclei
hard

A radioactive sample is undergoing $\alpha$ decay. At any time $t_{1}$, its activity is $A$ and another time $t _{2}$, the activity is $\frac{ A }{5}$. What is the average life time for the sample?

A

$\frac{\ell n 5}{ t _{2}- t _{1}}$

B

$\frac{ t _{1}- t _{2}}{\ell n 5}$

C

$\frac{ t _{2}- t _{1}}{\ell n 5}$

D

$\frac{\ell n \left( t _{2}+ t _{1}\right)}{2}$

(JEE MAIN-2021)

Solution

Let initial activity be $A _{0}$

$A = A _{0} e ^{-\lambda t_{2}}….(i)$

$\frac{ A }{5}= A _{0} e ^{-\lambda t_{2}}….(ii)$

$( i ) \div ( ii )$

$5= e ^{\lambda\left(t_{2}-t_{1}\right)}$

$\lambda=\frac{\ell n 5}{t_{2}-t_{1}}=\frac{1}{\tau}$

$\tau=\frac{t_{2}-t_{1}}{\ell n \cdot 5}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.