- Home
- Standard 11
- Physics
મંગળની સપાટી પરથી એક રૉકેટ ઊર્ધ્વદિશામાં $2\; km s ^{-1}$ ની ઝડપથી છોડવામાં આવે છે. જો મંગળના વાતાવરણના અવરોધને લીધે તેની પ્રારંભિક ઊર્જાની $20 \%$ ઊર્જા વ્યય પામતી હોય, તો મંગળની સપાટી પર પાછું આવતા પહેલાં રૉકેટ કેટલે દૂર જશે ? મંગળનું દળ $=6.4 \times 10^{23} \;kg$, મંગળની ત્રિજ્યા $=3395\; km ; G=6.67 \times 10^{-11}\; N m ^{2} kg ^{-2}$.
Solution
Initial velocity of the rocket, $v=2 km / s =2 \times 10^{3} m / s$
Mass of Mars, $M=6.4 \times 10^{23} kg$
Radius of Mars, $R=3395 km =3.395 \times 10^{6} m$
Universal gravitational constant, $G=6.67 \times 10^{-11} N m ^{2} kg ^{-2}$
Mass of the rocket $=m$
Initial kinetic energy of the rocket $=\frac{1}{2} m v^{2}$
Initial potential energy of the rocket $=\frac{-G M m}{R}$
Total initial energy $=\frac{1}{2} m v^{2}-\frac{ G M m}{R}$
If $20 \%$ of initial kinetic energy is lost due to Martian atmospheric resistance, then only
$80 \%$ of its kinetic energy helps in reaching a height.
Total initial energy available $=\frac{80}{100} \times \frac{1}{2} m v^{2}-\frac{ GMm }{R}=0.4 mv ^{2}-\frac{ GMm }{R}$
Maximum height reached by the rocket $=h$
At this height, the velocity and hence, the kinetic energy of the rocket will become zero.
Total energy of the rocket at height $h$
At this height, the velocity and hence, the kinetic energy of the rocket will become zero.
Total energy of the rocket at height $h \quad=-\frac{ G M m}{(R+h)}$
Applying the law of conservation of energy for the rocket, we kan write
$0.4 m v^{2}-\frac{G M m}{R}=\frac{-G M m}{(R+h)}$
$0.4 v^{2}=\frac{G M}{R}-\frac{G M}{R+h}$
$\quad=G M\left(\frac{1}{R}-\frac{1}{R+h}\right)$
$\quad=G M\left(\frac{R+h-R}{R(R+h)}\right)$
$\quad=\frac{G M h}{R(R+h)}$
$\frac{R+h}{h}=\frac{G M}{0.4 v^{2} R}$
$\frac{R}{h}+1=\frac{G M}{0.4 v^{2} R}$
$\frac{R}{h}=\frac{G M}{0.4 v^{2} R}-1$
$h=\frac{R}{\frac{R M}{0.4 v^{2} R}-1}$
$=\frac{0.4 R^{2} v^{2}}{G M-0.4 v^{2} R}$
$=\frac{0.4 \times\left(3.395 \times 10^{6}\right)^{2} \times\left(2 \times 10^{3}\right)^{2}}{6.67 \times 10^{-11} \times 6.4 \times 10^{23}-0.4 \times\left(2 \times 10^{3}\right)^{2} \times\left(3.395 \times 10^{6}\right)}$
$=\frac{18.442 \times 10^{18}}{42.688 \times 10^{12}-5.432 \times 10^{12}}=\frac{18.442}{37.256} \times 10^{6}$
$=495 \times 10^{3} m =495 km$