$1.05\, m $ લંબાઈ અને અવગણ્ય દળ ધરાવતાં એક સળિયાને આકૃતિમાં દર્શાવ્યા મુજબ બે તાર વડે બંને છેડેથી લટકાવેલ છે. તાર $A $ સ્ટીલ અને તાર $B$ ઍલ્યુમિનિયમનો છે. તાર $A$ અને તાર $B$ ના આડછેદનું ક્ષેત્રફળ અનુક્રમે $1.0\, mm$ અને $2.0\, mm$ છે. સળિયા પર કયા બિંદુએ $m $ દળ લટકાવવામાં આવે કે જેથી સ્ટીલ અને ઍલ્યુમિનિયમના બંને તારમાં $(a)$ સમાન પ્રતિબળ $(b)$ સમાન વિકૃતિ ઉદ્ભવે ?
(a) $0.7 m$ from the steel-wire end $0.432 m$ from the steel-wire end
Cross-sectional area of wire $A , a_{1}=1.0 mm ^{2}=1.0 \times 10^{-6} m ^{2}$
Cross-sectional area of wire $B , a_{2}=2.0 mm ^{2}=2.0 \times 10^{-6} m ^{2}$
Young's modulus for steel, $Y_{1}=2 \times 10^{11} Nm ^{-2}$
Young's modulus for aluminium, $Y_{2}=7.0 \times 10^{10} Nm ^{-2}$
Let a small mass $m$ be suspended to the rod at a distance $y$ from the end where wire $A$ is attached. Stress in the wire $=\frac{\text { Force }}{\text { Area }}=\frac{F}{a}$
If the two wires have equal stresses, then:
$\frac{F_{1}}{a_{1}}=\frac{F_{2}}{a_{2}}$
$F_{1}=$ Force exerted on the steel wire
$F_{2}=$ Force exerted on the aluminum wire
$\frac{F_{1}}{F_{2}}=\frac{a_{1}}{a_{2}}=\frac{1}{2}$
The situation is shown in the following figure.
Taking torque about the point of suspension, we have:
$F_{1} y=F_{2}(1.05-y)$
$\frac{F_{1}}{F_{2}}=\frac{(1.05-y)}{y}$
$\frac{(1.05-y)}{y}=\frac{1}{2}$
$2(1.05-y)=y$
$2.1-2 y=y$
$3 y=2.1$
$\therefore y=0.7 m$
In order to produce an equal stress in the two wires, the mass should be suspended at a distance of $0.7 \;m$ from the end where wire $A$ is attached.
Young's modulus $=\frac{\text { Stress }}{\text { Strain }}$
Strain $=\frac{\text { Stress }}{\text { Young's modulus }}=\frac{\frac{F}{a}}{Y}$
If the strain in the two wires is equal, then:
$\frac{\frac{F_1}{a_{1}}}{Y_{1}}=\frac{\frac{F_2}{a_{2}}}{Y_{2}}$
$\frac{F_{1}}{F_{2}}=\frac{a_{1}}{a_{2}} \frac{Y_{1}}{Y_{2}}=\frac{1}{2} \times \frac{2 \times 10^{11}}{7 \times 10^{10}}=\frac{10}{7}$
Taking torque about the point where mass $m$, is suspended at a distance $y_{1}$ from the side where wire A attached, we get:
$F_{1} y_{1}=F_{2}\left(1.05-y_{1}\right)$
$\frac{F_{1}}{F_{2}}=\frac{\left(1.05-y_{1}\right)}{y_{1}}$
$\frac{\left(1.05-y_{1}\right)}{y_{1}}=\frac{10}{7}$
$7\left(1.05-y_{1}\right)=10 y_{1}$
$17 y_{1}=7.35$
$\therefore y_{1}=0.432 m$
In order to produce an equal strain in the two wires, the mass should be suspended at a distance of $0.432 m$ from the end where wire $A$ is attached.
લોખંડનો યંગ મોડ્યુલસ $2 \times {10^{11}}\,N/{m^2}$ અને તેના બે અણું વચ્ચેનું અંતર $3 \times {10^{ - 10}}$$metre$ હોય તો આંતરઆણ્વિય બળ અચળાંક ......... $N/m$ થાય .
$A$ આડછેદનું ક્ષેત્રફળ, $r$ ત્રિજયાવાળી અને $E$ યંગ મોડયુલસ ઘરાવતી રીંગને $R$ ત્રિજયાની તકતી પર લગાવવા કેટલા બળની જરૂર પડે? $(R> r)$
$k$ જેટલા બળ અચળાંકવાળી એક હલકી સ્થિતિસ્થાપક દોરીના છેડે દળવાળો પથ્થર બાંધેલો છે. સામાન્ય સ્થિતિમાં આ દોરીની લંબાઈ $L$ છે. આ દોરીનો બીજો છેડો $P$ બિંદુએ જડિત કરેલી ખીલી સાથે બાંધેલો છે. પ્રારંભમાં પથ્થર $P$ બિંદુના સમક્ષિતિજ લેવલ પર છે. હવે આ પથ્થરને $P$ બિંદુએથી મુક્ત કરવામાં આવે છે.
$(a)$ પથ્થર જે બિંદુએ પહેલીવાર ક્ષણ પૂરતો સ્થિર થાય તે બિંદુનું ટોચના બિંદુથી અંતર $y$ શોધો.
$(b)$ અત્રે પથ્થરને મુક્ત કર્યા બાદ તેનો મહત્તમ વેગ કેટલો હશે ?
$(c)$ ગતિપથ પરના નિમ્નતમ સ્થાને પહોંચ્યા બાદ ગતિનો પ્રકાર કેવો હશે ?
સ્ટીલ માટે યંગ મોડયુલસ $2 \times {10^{11}}\,N{m^{ - 2}}$ અને બ્રેકીંગ વિકૃતિ $0.15$ હોય,તો બ્રેકીંગ પ્રતિબળ કેટલું થાય ?
યંગ મોડ્યુલસ નો એકમ ?