13.Nuclei
medium

A sample originally contaived $10^{20}$ radioactive atoms, which emit $\alpha -$ particles. The ratio of $\alpha -$ particles emitted in the third year to that emitted during the second year is $0.3.$ How many $\alpha -$ particles were emitted in the first year?

A

$3\times 10^{18}$

B

$7\times 10^{19}$

C

$5\times 10^{18}$

D

$3\times 10^{19}$

(AIEEE-2012)

Solution

$t = 0 $              $N_0 = 10^{20}$

$t = 1y$             $  N_1 = N_0e^{-\lambda(1)}$

$t = 2y$             $  N_2 =N_0e^{-\lambda(2)}$

$t = 3y$            $   N_3 = N_0e^{\lambda(3)}$

$\frac{{{N_2} – {N_3}}}{{{N_1} – {N_2}}} = 0.3\,\,\,$

$ \Rightarrow  \frac{{{N_0}{e^{ – 2\lambda }} – {N_0}{e^{ – 3\lambda }}}}{{{N_0}{e^{ – \lambda }} – {N_0}{e^{ – 2\lambda }}}} = 0.3$

$\frac{{{N_0}{e^{ – 2\lambda }}(1 – {e^{ – \lambda }})}}{{{N_0}{e^{ – \lambda }}(1 – {e^{ – \lambda }})}} = 0.3$

$e^{-\lambda}  = 0.3   $

$\therefore N_0 – N_1  = ?$

$= N_0 – N_0e^{-\lambda} = N_0(1 – e^{-\lambda})$  

$=  10^{20} (1 – 0.3) = 0.7 \times 10^{20} = 7 \times 10^{19}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.