Gujarati
Hindi
7.Gravitation
hard

A satellite is revolving around a planet of mass $'M'$ in an elliptical orbit of semi-major axis $'a'$. Then the speed of satellite when it is at a distance $(a/2)$ from the planet

A

$\sqrt {\frac{{GM}}{a}} $

B

$\sqrt {\frac{{3GM}}{a}} $

C

$\sqrt {\frac{{2GM}}{a}} $

D

$\sqrt {\frac{{GM}}{2a}} $

Solution

As total energy is $-\frac{\mathrm{GMm}}{2 \mathrm{a}}$

$\Rightarrow-\frac{\mathrm{GMm}}{2 \mathrm{a}}=\frac{1}{2} \mathrm{mv}^{2}-\frac{\mathrm{GMm}}{\mathrm{a} / 2}$

$\frac{1}{2} \mathrm{mv}^{2}=\frac{2 \mathrm{GMm}}{\mathrm{a}}-\frac{\mathrm{GMm}}{2 \mathrm{a}}$

$\Rightarrow \frac{\mathrm{v}^{2}}{2}=\frac{\mathrm{GM}}{\mathrm{a}}[4-1]$

$\Rightarrow \quad \mathrm{v}=\sqrt{\frac{3 \mathrm{GM}}{\mathrm{a}}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.